| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mulg1.b |
|- B = ( Base ` G ) |
| 2 |
|
mulg1.m |
|- .x. = ( .g ` G ) |
| 3 |
|
mulgnegnn.i |
|- I = ( invg ` G ) |
| 4 |
|
nncn |
|- ( N e. NN -> N e. CC ) |
| 5 |
4
|
negnegd |
|- ( N e. NN -> -u -u N = N ) |
| 6 |
5
|
adantr |
|- ( ( N e. NN /\ X e. B ) -> -u -u N = N ) |
| 7 |
6
|
fveq2d |
|- ( ( N e. NN /\ X e. B ) -> ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` -u -u N ) = ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` N ) ) |
| 8 |
7
|
fveq2d |
|- ( ( N e. NN /\ X e. B ) -> ( I ` ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` -u -u N ) ) = ( I ` ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` N ) ) ) |
| 9 |
|
nnnegz |
|- ( N e. NN -> -u N e. ZZ ) |
| 10 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
| 11 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
| 12 |
|
eqid |
|- seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) = seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) |
| 13 |
1 10 11 3 2 12
|
mulgval |
|- ( ( -u N e. ZZ /\ X e. B ) -> ( -u N .x. X ) = if ( -u N = 0 , ( 0g ` G ) , if ( 0 < -u N , ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` -u N ) , ( I ` ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` -u -u N ) ) ) ) ) |
| 14 |
9 13
|
sylan |
|- ( ( N e. NN /\ X e. B ) -> ( -u N .x. X ) = if ( -u N = 0 , ( 0g ` G ) , if ( 0 < -u N , ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` -u N ) , ( I ` ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` -u -u N ) ) ) ) ) |
| 15 |
|
nnne0 |
|- ( N e. NN -> N =/= 0 ) |
| 16 |
|
negeq0 |
|- ( N e. CC -> ( N = 0 <-> -u N = 0 ) ) |
| 17 |
16
|
necon3abid |
|- ( N e. CC -> ( N =/= 0 <-> -. -u N = 0 ) ) |
| 18 |
4 17
|
syl |
|- ( N e. NN -> ( N =/= 0 <-> -. -u N = 0 ) ) |
| 19 |
15 18
|
mpbid |
|- ( N e. NN -> -. -u N = 0 ) |
| 20 |
19
|
iffalsed |
|- ( N e. NN -> if ( -u N = 0 , ( 0g ` G ) , if ( 0 < -u N , ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` -u N ) , ( I ` ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` -u -u N ) ) ) ) = if ( 0 < -u N , ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` -u N ) , ( I ` ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` -u -u N ) ) ) ) |
| 21 |
|
nnre |
|- ( N e. NN -> N e. RR ) |
| 22 |
21
|
renegcld |
|- ( N e. NN -> -u N e. RR ) |
| 23 |
|
nngt0 |
|- ( N e. NN -> 0 < N ) |
| 24 |
21
|
lt0neg2d |
|- ( N e. NN -> ( 0 < N <-> -u N < 0 ) ) |
| 25 |
23 24
|
mpbid |
|- ( N e. NN -> -u N < 0 ) |
| 26 |
|
0re |
|- 0 e. RR |
| 27 |
|
ltnsym |
|- ( ( -u N e. RR /\ 0 e. RR ) -> ( -u N < 0 -> -. 0 < -u N ) ) |
| 28 |
26 27
|
mpan2 |
|- ( -u N e. RR -> ( -u N < 0 -> -. 0 < -u N ) ) |
| 29 |
22 25 28
|
sylc |
|- ( N e. NN -> -. 0 < -u N ) |
| 30 |
29
|
iffalsed |
|- ( N e. NN -> if ( 0 < -u N , ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` -u N ) , ( I ` ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` -u -u N ) ) ) = ( I ` ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` -u -u N ) ) ) |
| 31 |
20 30
|
eqtrd |
|- ( N e. NN -> if ( -u N = 0 , ( 0g ` G ) , if ( 0 < -u N , ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` -u N ) , ( I ` ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` -u -u N ) ) ) ) = ( I ` ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` -u -u N ) ) ) |
| 32 |
31
|
adantr |
|- ( ( N e. NN /\ X e. B ) -> if ( -u N = 0 , ( 0g ` G ) , if ( 0 < -u N , ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` -u N ) , ( I ` ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` -u -u N ) ) ) ) = ( I ` ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` -u -u N ) ) ) |
| 33 |
14 32
|
eqtrd |
|- ( ( N e. NN /\ X e. B ) -> ( -u N .x. X ) = ( I ` ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` -u -u N ) ) ) |
| 34 |
1 10 2 12
|
mulgnn |
|- ( ( N e. NN /\ X e. B ) -> ( N .x. X ) = ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` N ) ) |
| 35 |
34
|
fveq2d |
|- ( ( N e. NN /\ X e. B ) -> ( I ` ( N .x. X ) ) = ( I ` ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` N ) ) ) |
| 36 |
8 33 35
|
3eqtr4d |
|- ( ( N e. NN /\ X e. B ) -> ( -u N .x. X ) = ( I ` ( N .x. X ) ) ) |