Step |
Hyp |
Ref |
Expression |
1 |
|
mulgnn.b |
|- B = ( Base ` G ) |
2 |
|
mulgnn.p |
|- .+ = ( +g ` G ) |
3 |
|
mulgnn.t |
|- .x. = ( .g ` G ) |
4 |
|
mulgnn.s |
|- S = seq 1 ( .+ , ( NN X. { X } ) ) |
5 |
|
nnz |
|- ( N e. NN -> N e. ZZ ) |
6 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
7 |
|
eqid |
|- ( invg ` G ) = ( invg ` G ) |
8 |
1 2 6 7 3 4
|
mulgval |
|- ( ( N e. ZZ /\ X e. B ) -> ( N .x. X ) = if ( N = 0 , ( 0g ` G ) , if ( 0 < N , ( S ` N ) , ( ( invg ` G ) ` ( S ` -u N ) ) ) ) ) |
9 |
5 8
|
sylan |
|- ( ( N e. NN /\ X e. B ) -> ( N .x. X ) = if ( N = 0 , ( 0g ` G ) , if ( 0 < N , ( S ` N ) , ( ( invg ` G ) ` ( S ` -u N ) ) ) ) ) |
10 |
|
nnne0 |
|- ( N e. NN -> N =/= 0 ) |
11 |
10
|
neneqd |
|- ( N e. NN -> -. N = 0 ) |
12 |
11
|
iffalsed |
|- ( N e. NN -> if ( N = 0 , ( 0g ` G ) , if ( 0 < N , ( S ` N ) , ( ( invg ` G ) ` ( S ` -u N ) ) ) ) = if ( 0 < N , ( S ` N ) , ( ( invg ` G ) ` ( S ` -u N ) ) ) ) |
13 |
|
nngt0 |
|- ( N e. NN -> 0 < N ) |
14 |
13
|
iftrued |
|- ( N e. NN -> if ( 0 < N , ( S ` N ) , ( ( invg ` G ) ` ( S ` -u N ) ) ) = ( S ` N ) ) |
15 |
12 14
|
eqtrd |
|- ( N e. NN -> if ( N = 0 , ( 0g ` G ) , if ( 0 < N , ( S ` N ) , ( ( invg ` G ) ` ( S ` -u N ) ) ) ) = ( S ` N ) ) |
16 |
15
|
adantr |
|- ( ( N e. NN /\ X e. B ) -> if ( N = 0 , ( 0g ` G ) , if ( 0 < N , ( S ` N ) , ( ( invg ` G ) ` ( S ` -u N ) ) ) ) = ( S ` N ) ) |
17 |
9 16
|
eqtrd |
|- ( ( N e. NN /\ X e. B ) -> ( N .x. X ) = ( S ` N ) ) |