Step |
Hyp |
Ref |
Expression |
1 |
|
mulgass.b |
|- B = ( Base ` G ) |
2 |
|
mulgass.t |
|- .x. = ( .g ` G ) |
3 |
|
mndsgrp |
|- ( G e. Mnd -> G e. Smgrp ) |
4 |
3
|
adantr |
|- ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) -> G e. Smgrp ) |
5 |
4
|
adantr |
|- ( ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) /\ ( M e. NN /\ N e. NN ) ) -> G e. Smgrp ) |
6 |
|
simprl |
|- ( ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) /\ ( M e. NN /\ N e. NN ) ) -> M e. NN ) |
7 |
|
simprr |
|- ( ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) /\ ( M e. NN /\ N e. NN ) ) -> N e. NN ) |
8 |
|
simpr3 |
|- ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) -> X e. B ) |
9 |
8
|
adantr |
|- ( ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) /\ ( M e. NN /\ N e. NN ) ) -> X e. B ) |
10 |
1 2
|
mulgnnass |
|- ( ( G e. Smgrp /\ ( M e. NN /\ N e. NN /\ X e. B ) ) -> ( ( M x. N ) .x. X ) = ( M .x. ( N .x. X ) ) ) |
11 |
5 6 7 9 10
|
syl13anc |
|- ( ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) /\ ( M e. NN /\ N e. NN ) ) -> ( ( M x. N ) .x. X ) = ( M .x. ( N .x. X ) ) ) |
12 |
11
|
expr |
|- ( ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) /\ M e. NN ) -> ( N e. NN -> ( ( M x. N ) .x. X ) = ( M .x. ( N .x. X ) ) ) ) |
13 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
14 |
1 13 2
|
mulg0 |
|- ( X e. B -> ( 0 .x. X ) = ( 0g ` G ) ) |
15 |
8 14
|
syl |
|- ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) -> ( 0 .x. X ) = ( 0g ` G ) ) |
16 |
|
simpr1 |
|- ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) -> M e. NN0 ) |
17 |
16
|
nn0cnd |
|- ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) -> M e. CC ) |
18 |
17
|
mul01d |
|- ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) -> ( M x. 0 ) = 0 ) |
19 |
18
|
oveq1d |
|- ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) -> ( ( M x. 0 ) .x. X ) = ( 0 .x. X ) ) |
20 |
15
|
oveq2d |
|- ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) -> ( M .x. ( 0 .x. X ) ) = ( M .x. ( 0g ` G ) ) ) |
21 |
1 2 13
|
mulgnn0z |
|- ( ( G e. Mnd /\ M e. NN0 ) -> ( M .x. ( 0g ` G ) ) = ( 0g ` G ) ) |
22 |
21
|
3ad2antr1 |
|- ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) -> ( M .x. ( 0g ` G ) ) = ( 0g ` G ) ) |
23 |
20 22
|
eqtrd |
|- ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) -> ( M .x. ( 0 .x. X ) ) = ( 0g ` G ) ) |
24 |
15 19 23
|
3eqtr4d |
|- ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) -> ( ( M x. 0 ) .x. X ) = ( M .x. ( 0 .x. X ) ) ) |
25 |
24
|
adantr |
|- ( ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) /\ M e. NN ) -> ( ( M x. 0 ) .x. X ) = ( M .x. ( 0 .x. X ) ) ) |
26 |
|
oveq2 |
|- ( N = 0 -> ( M x. N ) = ( M x. 0 ) ) |
27 |
26
|
oveq1d |
|- ( N = 0 -> ( ( M x. N ) .x. X ) = ( ( M x. 0 ) .x. X ) ) |
28 |
|
oveq1 |
|- ( N = 0 -> ( N .x. X ) = ( 0 .x. X ) ) |
29 |
28
|
oveq2d |
|- ( N = 0 -> ( M .x. ( N .x. X ) ) = ( M .x. ( 0 .x. X ) ) ) |
30 |
27 29
|
eqeq12d |
|- ( N = 0 -> ( ( ( M x. N ) .x. X ) = ( M .x. ( N .x. X ) ) <-> ( ( M x. 0 ) .x. X ) = ( M .x. ( 0 .x. X ) ) ) ) |
31 |
25 30
|
syl5ibrcom |
|- ( ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) /\ M e. NN ) -> ( N = 0 -> ( ( M x. N ) .x. X ) = ( M .x. ( N .x. X ) ) ) ) |
32 |
|
simpr2 |
|- ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) -> N e. NN0 ) |
33 |
|
elnn0 |
|- ( N e. NN0 <-> ( N e. NN \/ N = 0 ) ) |
34 |
32 33
|
sylib |
|- ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) -> ( N e. NN \/ N = 0 ) ) |
35 |
34
|
adantr |
|- ( ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) /\ M e. NN ) -> ( N e. NN \/ N = 0 ) ) |
36 |
12 31 35
|
mpjaod |
|- ( ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) /\ M e. NN ) -> ( ( M x. N ) .x. X ) = ( M .x. ( N .x. X ) ) ) |
37 |
36
|
ex |
|- ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) -> ( M e. NN -> ( ( M x. N ) .x. X ) = ( M .x. ( N .x. X ) ) ) ) |
38 |
32
|
nn0cnd |
|- ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) -> N e. CC ) |
39 |
38
|
mul02d |
|- ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) -> ( 0 x. N ) = 0 ) |
40 |
39
|
oveq1d |
|- ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) -> ( ( 0 x. N ) .x. X ) = ( 0 .x. X ) ) |
41 |
1 2
|
mulgnn0cl |
|- ( ( G e. Mnd /\ N e. NN0 /\ X e. B ) -> ( N .x. X ) e. B ) |
42 |
41
|
3adant3r1 |
|- ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) -> ( N .x. X ) e. B ) |
43 |
1 13 2
|
mulg0 |
|- ( ( N .x. X ) e. B -> ( 0 .x. ( N .x. X ) ) = ( 0g ` G ) ) |
44 |
42 43
|
syl |
|- ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) -> ( 0 .x. ( N .x. X ) ) = ( 0g ` G ) ) |
45 |
15 40 44
|
3eqtr4d |
|- ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) -> ( ( 0 x. N ) .x. X ) = ( 0 .x. ( N .x. X ) ) ) |
46 |
|
oveq1 |
|- ( M = 0 -> ( M x. N ) = ( 0 x. N ) ) |
47 |
46
|
oveq1d |
|- ( M = 0 -> ( ( M x. N ) .x. X ) = ( ( 0 x. N ) .x. X ) ) |
48 |
|
oveq1 |
|- ( M = 0 -> ( M .x. ( N .x. X ) ) = ( 0 .x. ( N .x. X ) ) ) |
49 |
47 48
|
eqeq12d |
|- ( M = 0 -> ( ( ( M x. N ) .x. X ) = ( M .x. ( N .x. X ) ) <-> ( ( 0 x. N ) .x. X ) = ( 0 .x. ( N .x. X ) ) ) ) |
50 |
45 49
|
syl5ibrcom |
|- ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) -> ( M = 0 -> ( ( M x. N ) .x. X ) = ( M .x. ( N .x. X ) ) ) ) |
51 |
|
elnn0 |
|- ( M e. NN0 <-> ( M e. NN \/ M = 0 ) ) |
52 |
16 51
|
sylib |
|- ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) -> ( M e. NN \/ M = 0 ) ) |
53 |
37 50 52
|
mpjaod |
|- ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) -> ( ( M x. N ) .x. X ) = ( M .x. ( N .x. X ) ) ) |