Description: Closure of the group multiple (exponentiation) operation for a nonnegative multiplier in a monoid. (Contributed by Mario Carneiro, 11-Dec-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mulgnncl.b | |- B = ( Base ` G ) |
|
mulgnncl.t | |- .x. = ( .g ` G ) |
||
Assertion | mulgnn0cl | |- ( ( G e. Mnd /\ N e. NN0 /\ X e. B ) -> ( N .x. X ) e. B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mulgnncl.b | |- B = ( Base ` G ) |
|
2 | mulgnncl.t | |- .x. = ( .g ` G ) |
|
3 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
4 | id | |- ( G e. Mnd -> G e. Mnd ) |
|
5 | ssidd | |- ( G e. Mnd -> B C_ B ) |
|
6 | 1 3 | mndcl | |- ( ( G e. Mnd /\ x e. B /\ y e. B ) -> ( x ( +g ` G ) y ) e. B ) |
7 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
8 | 1 7 | mndidcl | |- ( G e. Mnd -> ( 0g ` G ) e. B ) |
9 | 1 2 3 4 5 6 7 8 | mulgnn0subcl | |- ( ( G e. Mnd /\ N e. NN0 /\ X e. B ) -> ( N .x. X ) e. B ) |