Description: Closure of the group multiple (exponentiation) operation for a nonnegative multiplier in a monoid. Deduction associated with mulgnn0cl . (Contributed by SN, 1-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mulgnn0cld.b | |- B = ( Base ` G ) |
|
| mulgnn0cld.t | |- .x. = ( .g ` G ) |
||
| mulgnn0cld.m | |- ( ph -> G e. Mnd ) |
||
| mulgnn0cld.n | |- ( ph -> N e. NN0 ) |
||
| mulgnn0cld.x | |- ( ph -> X e. B ) |
||
| Assertion | mulgnn0cld | |- ( ph -> ( N .x. X ) e. B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulgnn0cld.b | |- B = ( Base ` G ) |
|
| 2 | mulgnn0cld.t | |- .x. = ( .g ` G ) |
|
| 3 | mulgnn0cld.m | |- ( ph -> G e. Mnd ) |
|
| 4 | mulgnn0cld.n | |- ( ph -> N e. NN0 ) |
|
| 5 | mulgnn0cld.x | |- ( ph -> X e. B ) |
|
| 6 | 1 2 | mulgnn0cl | |- ( ( G e. Mnd /\ N e. NN0 /\ X e. B ) -> ( N .x. X ) e. B ) |
| 7 | 3 4 5 6 | syl3anc | |- ( ph -> ( N .x. X ) e. B ) |