Metamath Proof Explorer


Theorem mulgnn0cld

Description: Closure of the group multiple (exponentiation) operation for a nonnegative multiplier in a monoid. Deduction associated with mulgnn0cl . (Contributed by SN, 1-Feb-2025)

Ref Expression
Hypotheses mulgnn0cld.b
|- B = ( Base ` G )
mulgnn0cld.t
|- .x. = ( .g ` G )
mulgnn0cld.m
|- ( ph -> G e. Mnd )
mulgnn0cld.n
|- ( ph -> N e. NN0 )
mulgnn0cld.x
|- ( ph -> X e. B )
Assertion mulgnn0cld
|- ( ph -> ( N .x. X ) e. B )

Proof

Step Hyp Ref Expression
1 mulgnn0cld.b
 |-  B = ( Base ` G )
2 mulgnn0cld.t
 |-  .x. = ( .g ` G )
3 mulgnn0cld.m
 |-  ( ph -> G e. Mnd )
4 mulgnn0cld.n
 |-  ( ph -> N e. NN0 )
5 mulgnn0cld.x
 |-  ( ph -> X e. B )
6 1 2 mulgnn0cl
 |-  ( ( G e. Mnd /\ N e. NN0 /\ X e. B ) -> ( N .x. X ) e. B )
7 3 4 5 6 syl3anc
 |-  ( ph -> ( N .x. X ) e. B )