| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mulgnngsum.b |  |-  B = ( Base ` G ) | 
						
							| 2 |  | mulgnngsum.t |  |-  .x. = ( .g ` G ) | 
						
							| 3 |  | mulgnngsum.f |  |-  F = ( x e. ( 1 ... N ) |-> X ) | 
						
							| 4 |  | elnn0 |  |-  ( N e. NN0 <-> ( N e. NN \/ N = 0 ) ) | 
						
							| 5 | 1 2 3 | mulgnngsum |  |-  ( ( N e. NN /\ X e. B ) -> ( N .x. X ) = ( G gsum F ) ) | 
						
							| 6 | 5 | ex |  |-  ( N e. NN -> ( X e. B -> ( N .x. X ) = ( G gsum F ) ) ) | 
						
							| 7 |  | oveq1 |  |-  ( N = 0 -> ( N .x. X ) = ( 0 .x. X ) ) | 
						
							| 8 |  | eqid |  |-  ( 0g ` G ) = ( 0g ` G ) | 
						
							| 9 | 1 8 2 | mulg0 |  |-  ( X e. B -> ( 0 .x. X ) = ( 0g ` G ) ) | 
						
							| 10 | 7 9 | sylan9eq |  |-  ( ( N = 0 /\ X e. B ) -> ( N .x. X ) = ( 0g ` G ) ) | 
						
							| 11 |  | oveq2 |  |-  ( N = 0 -> ( 1 ... N ) = ( 1 ... 0 ) ) | 
						
							| 12 |  | fz10 |  |-  ( 1 ... 0 ) = (/) | 
						
							| 13 | 11 12 | eqtrdi |  |-  ( N = 0 -> ( 1 ... N ) = (/) ) | 
						
							| 14 |  | eqidd |  |-  ( N = 0 -> X = X ) | 
						
							| 15 | 13 14 | mpteq12dv |  |-  ( N = 0 -> ( x e. ( 1 ... N ) |-> X ) = ( x e. (/) |-> X ) ) | 
						
							| 16 |  | mpt0 |  |-  ( x e. (/) |-> X ) = (/) | 
						
							| 17 | 15 16 | eqtrdi |  |-  ( N = 0 -> ( x e. ( 1 ... N ) |-> X ) = (/) ) | 
						
							| 18 | 3 17 | eqtrid |  |-  ( N = 0 -> F = (/) ) | 
						
							| 19 | 18 | adantr |  |-  ( ( N = 0 /\ X e. B ) -> F = (/) ) | 
						
							| 20 | 19 | oveq2d |  |-  ( ( N = 0 /\ X e. B ) -> ( G gsum F ) = ( G gsum (/) ) ) | 
						
							| 21 | 8 | gsum0 |  |-  ( G gsum (/) ) = ( 0g ` G ) | 
						
							| 22 | 20 21 | eqtrdi |  |-  ( ( N = 0 /\ X e. B ) -> ( G gsum F ) = ( 0g ` G ) ) | 
						
							| 23 | 10 22 | eqtr4d |  |-  ( ( N = 0 /\ X e. B ) -> ( N .x. X ) = ( G gsum F ) ) | 
						
							| 24 | 23 | ex |  |-  ( N = 0 -> ( X e. B -> ( N .x. X ) = ( G gsum F ) ) ) | 
						
							| 25 | 6 24 | jaoi |  |-  ( ( N e. NN \/ N = 0 ) -> ( X e. B -> ( N .x. X ) = ( G gsum F ) ) ) | 
						
							| 26 | 4 25 | sylbi |  |-  ( N e. NN0 -> ( X e. B -> ( N .x. X ) = ( G gsum F ) ) ) | 
						
							| 27 | 26 | imp |  |-  ( ( N e. NN0 /\ X e. B ) -> ( N .x. X ) = ( G gsum F ) ) |