Metamath Proof Explorer


Theorem mulgnn0gsum

Description: Group multiple (exponentiation) operation at a nonnegative integer expressed by a group sum. This corresponds to the definition in Lang p. 6, second formula. (Contributed by AV, 28-Dec-2023)

Ref Expression
Hypotheses mulgnngsum.b
|- B = ( Base ` G )
mulgnngsum.t
|- .x. = ( .g ` G )
mulgnngsum.f
|- F = ( x e. ( 1 ... N ) |-> X )
Assertion mulgnn0gsum
|- ( ( N e. NN0 /\ X e. B ) -> ( N .x. X ) = ( G gsum F ) )

Proof

Step Hyp Ref Expression
1 mulgnngsum.b
 |-  B = ( Base ` G )
2 mulgnngsum.t
 |-  .x. = ( .g ` G )
3 mulgnngsum.f
 |-  F = ( x e. ( 1 ... N ) |-> X )
4 elnn0
 |-  ( N e. NN0 <-> ( N e. NN \/ N = 0 ) )
5 1 2 3 mulgnngsum
 |-  ( ( N e. NN /\ X e. B ) -> ( N .x. X ) = ( G gsum F ) )
6 5 ex
 |-  ( N e. NN -> ( X e. B -> ( N .x. X ) = ( G gsum F ) ) )
7 oveq1
 |-  ( N = 0 -> ( N .x. X ) = ( 0 .x. X ) )
8 eqid
 |-  ( 0g ` G ) = ( 0g ` G )
9 1 8 2 mulg0
 |-  ( X e. B -> ( 0 .x. X ) = ( 0g ` G ) )
10 7 9 sylan9eq
 |-  ( ( N = 0 /\ X e. B ) -> ( N .x. X ) = ( 0g ` G ) )
11 oveq2
 |-  ( N = 0 -> ( 1 ... N ) = ( 1 ... 0 ) )
12 fz10
 |-  ( 1 ... 0 ) = (/)
13 11 12 eqtrdi
 |-  ( N = 0 -> ( 1 ... N ) = (/) )
14 eqidd
 |-  ( N = 0 -> X = X )
15 13 14 mpteq12dv
 |-  ( N = 0 -> ( x e. ( 1 ... N ) |-> X ) = ( x e. (/) |-> X ) )
16 mpt0
 |-  ( x e. (/) |-> X ) = (/)
17 15 16 eqtrdi
 |-  ( N = 0 -> ( x e. ( 1 ... N ) |-> X ) = (/) )
18 3 17 syl5eq
 |-  ( N = 0 -> F = (/) )
19 18 adantr
 |-  ( ( N = 0 /\ X e. B ) -> F = (/) )
20 19 oveq2d
 |-  ( ( N = 0 /\ X e. B ) -> ( G gsum F ) = ( G gsum (/) ) )
21 8 gsum0
 |-  ( G gsum (/) ) = ( 0g ` G )
22 20 21 eqtrdi
 |-  ( ( N = 0 /\ X e. B ) -> ( G gsum F ) = ( 0g ` G ) )
23 10 22 eqtr4d
 |-  ( ( N = 0 /\ X e. B ) -> ( N .x. X ) = ( G gsum F ) )
24 23 ex
 |-  ( N = 0 -> ( X e. B -> ( N .x. X ) = ( G gsum F ) ) )
25 6 24 jaoi
 |-  ( ( N e. NN \/ N = 0 ) -> ( X e. B -> ( N .x. X ) = ( G gsum F ) ) )
26 4 25 sylbi
 |-  ( N e. NN0 -> ( X e. B -> ( N .x. X ) = ( G gsum F ) ) )
27 26 imp
 |-  ( ( N e. NN0 /\ X e. B ) -> ( N .x. X ) = ( G gsum F ) )