Step |
Hyp |
Ref |
Expression |
1 |
|
mulgnngsum.b |
|- B = ( Base ` G ) |
2 |
|
mulgnngsum.t |
|- .x. = ( .g ` G ) |
3 |
|
mulgnngsum.f |
|- F = ( x e. ( 1 ... N ) |-> X ) |
4 |
|
elnn0 |
|- ( N e. NN0 <-> ( N e. NN \/ N = 0 ) ) |
5 |
1 2 3
|
mulgnngsum |
|- ( ( N e. NN /\ X e. B ) -> ( N .x. X ) = ( G gsum F ) ) |
6 |
5
|
ex |
|- ( N e. NN -> ( X e. B -> ( N .x. X ) = ( G gsum F ) ) ) |
7 |
|
oveq1 |
|- ( N = 0 -> ( N .x. X ) = ( 0 .x. X ) ) |
8 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
9 |
1 8 2
|
mulg0 |
|- ( X e. B -> ( 0 .x. X ) = ( 0g ` G ) ) |
10 |
7 9
|
sylan9eq |
|- ( ( N = 0 /\ X e. B ) -> ( N .x. X ) = ( 0g ` G ) ) |
11 |
|
oveq2 |
|- ( N = 0 -> ( 1 ... N ) = ( 1 ... 0 ) ) |
12 |
|
fz10 |
|- ( 1 ... 0 ) = (/) |
13 |
11 12
|
eqtrdi |
|- ( N = 0 -> ( 1 ... N ) = (/) ) |
14 |
|
eqidd |
|- ( N = 0 -> X = X ) |
15 |
13 14
|
mpteq12dv |
|- ( N = 0 -> ( x e. ( 1 ... N ) |-> X ) = ( x e. (/) |-> X ) ) |
16 |
|
mpt0 |
|- ( x e. (/) |-> X ) = (/) |
17 |
15 16
|
eqtrdi |
|- ( N = 0 -> ( x e. ( 1 ... N ) |-> X ) = (/) ) |
18 |
3 17
|
eqtrid |
|- ( N = 0 -> F = (/) ) |
19 |
18
|
adantr |
|- ( ( N = 0 /\ X e. B ) -> F = (/) ) |
20 |
19
|
oveq2d |
|- ( ( N = 0 /\ X e. B ) -> ( G gsum F ) = ( G gsum (/) ) ) |
21 |
8
|
gsum0 |
|- ( G gsum (/) ) = ( 0g ` G ) |
22 |
20 21
|
eqtrdi |
|- ( ( N = 0 /\ X e. B ) -> ( G gsum F ) = ( 0g ` G ) ) |
23 |
10 22
|
eqtr4d |
|- ( ( N = 0 /\ X e. B ) -> ( N .x. X ) = ( G gsum F ) ) |
24 |
23
|
ex |
|- ( N = 0 -> ( X e. B -> ( N .x. X ) = ( G gsum F ) ) ) |
25 |
6 24
|
jaoi |
|- ( ( N e. NN \/ N = 0 ) -> ( X e. B -> ( N .x. X ) = ( G gsum F ) ) ) |
26 |
4 25
|
sylbi |
|- ( N e. NN0 -> ( X e. B -> ( N .x. X ) = ( G gsum F ) ) ) |
27 |
26
|
imp |
|- ( ( N e. NN0 /\ X e. B ) -> ( N .x. X ) = ( G gsum F ) ) |