Step |
Hyp |
Ref |
Expression |
1 |
|
mulgnn0p1.b |
|- B = ( Base ` G ) |
2 |
|
mulgnn0p1.t |
|- .x. = ( .g ` G ) |
3 |
|
mulgnn0p1.p |
|- .+ = ( +g ` G ) |
4 |
|
simpr |
|- ( ( ( G e. Mnd /\ N e. NN0 /\ X e. B ) /\ N e. NN ) -> N e. NN ) |
5 |
|
simpl3 |
|- ( ( ( G e. Mnd /\ N e. NN0 /\ X e. B ) /\ N e. NN ) -> X e. B ) |
6 |
1 2 3
|
mulgnnp1 |
|- ( ( N e. NN /\ X e. B ) -> ( ( N + 1 ) .x. X ) = ( ( N .x. X ) .+ X ) ) |
7 |
4 5 6
|
syl2anc |
|- ( ( ( G e. Mnd /\ N e. NN0 /\ X e. B ) /\ N e. NN ) -> ( ( N + 1 ) .x. X ) = ( ( N .x. X ) .+ X ) ) |
8 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
9 |
1 3 8
|
mndlid |
|- ( ( G e. Mnd /\ X e. B ) -> ( ( 0g ` G ) .+ X ) = X ) |
10 |
1 8 2
|
mulg0 |
|- ( X e. B -> ( 0 .x. X ) = ( 0g ` G ) ) |
11 |
10
|
adantl |
|- ( ( G e. Mnd /\ X e. B ) -> ( 0 .x. X ) = ( 0g ` G ) ) |
12 |
11
|
oveq1d |
|- ( ( G e. Mnd /\ X e. B ) -> ( ( 0 .x. X ) .+ X ) = ( ( 0g ` G ) .+ X ) ) |
13 |
1 2
|
mulg1 |
|- ( X e. B -> ( 1 .x. X ) = X ) |
14 |
13
|
adantl |
|- ( ( G e. Mnd /\ X e. B ) -> ( 1 .x. X ) = X ) |
15 |
9 12 14
|
3eqtr4rd |
|- ( ( G e. Mnd /\ X e. B ) -> ( 1 .x. X ) = ( ( 0 .x. X ) .+ X ) ) |
16 |
15
|
3adant2 |
|- ( ( G e. Mnd /\ N e. NN0 /\ X e. B ) -> ( 1 .x. X ) = ( ( 0 .x. X ) .+ X ) ) |
17 |
|
oveq1 |
|- ( N = 0 -> ( N + 1 ) = ( 0 + 1 ) ) |
18 |
|
1e0p1 |
|- 1 = ( 0 + 1 ) |
19 |
17 18
|
eqtr4di |
|- ( N = 0 -> ( N + 1 ) = 1 ) |
20 |
19
|
oveq1d |
|- ( N = 0 -> ( ( N + 1 ) .x. X ) = ( 1 .x. X ) ) |
21 |
|
oveq1 |
|- ( N = 0 -> ( N .x. X ) = ( 0 .x. X ) ) |
22 |
21
|
oveq1d |
|- ( N = 0 -> ( ( N .x. X ) .+ X ) = ( ( 0 .x. X ) .+ X ) ) |
23 |
20 22
|
eqeq12d |
|- ( N = 0 -> ( ( ( N + 1 ) .x. X ) = ( ( N .x. X ) .+ X ) <-> ( 1 .x. X ) = ( ( 0 .x. X ) .+ X ) ) ) |
24 |
16 23
|
syl5ibrcom |
|- ( ( G e. Mnd /\ N e. NN0 /\ X e. B ) -> ( N = 0 -> ( ( N + 1 ) .x. X ) = ( ( N .x. X ) .+ X ) ) ) |
25 |
24
|
imp |
|- ( ( ( G e. Mnd /\ N e. NN0 /\ X e. B ) /\ N = 0 ) -> ( ( N + 1 ) .x. X ) = ( ( N .x. X ) .+ X ) ) |
26 |
|
simp2 |
|- ( ( G e. Mnd /\ N e. NN0 /\ X e. B ) -> N e. NN0 ) |
27 |
|
elnn0 |
|- ( N e. NN0 <-> ( N e. NN \/ N = 0 ) ) |
28 |
26 27
|
sylib |
|- ( ( G e. Mnd /\ N e. NN0 /\ X e. B ) -> ( N e. NN \/ N = 0 ) ) |
29 |
7 25 28
|
mpjaodan |
|- ( ( G e. Mnd /\ N e. NN0 /\ X e. B ) -> ( ( N + 1 ) .x. X ) = ( ( N .x. X ) .+ X ) ) |