| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mulgnnsubcl.b |
|- B = ( Base ` G ) |
| 2 |
|
mulgnnsubcl.t |
|- .x. = ( .g ` G ) |
| 3 |
|
mulgnnsubcl.p |
|- .+ = ( +g ` G ) |
| 4 |
|
mulgnnsubcl.g |
|- ( ph -> G e. V ) |
| 5 |
|
mulgnnsubcl.s |
|- ( ph -> S C_ B ) |
| 6 |
|
mulgnnsubcl.c |
|- ( ( ph /\ x e. S /\ y e. S ) -> ( x .+ y ) e. S ) |
| 7 |
|
mulgnn0subcl.z |
|- .0. = ( 0g ` G ) |
| 8 |
|
mulgnn0subcl.c |
|- ( ph -> .0. e. S ) |
| 9 |
1 2 3 4 5 6
|
mulgnnsubcl |
|- ( ( ph /\ N e. NN /\ X e. S ) -> ( N .x. X ) e. S ) |
| 10 |
9
|
3expa |
|- ( ( ( ph /\ N e. NN ) /\ X e. S ) -> ( N .x. X ) e. S ) |
| 11 |
10
|
an32s |
|- ( ( ( ph /\ X e. S ) /\ N e. NN ) -> ( N .x. X ) e. S ) |
| 12 |
11
|
3adantl2 |
|- ( ( ( ph /\ N e. NN0 /\ X e. S ) /\ N e. NN ) -> ( N .x. X ) e. S ) |
| 13 |
|
oveq1 |
|- ( N = 0 -> ( N .x. X ) = ( 0 .x. X ) ) |
| 14 |
5
|
3ad2ant1 |
|- ( ( ph /\ N e. NN0 /\ X e. S ) -> S C_ B ) |
| 15 |
|
simp3 |
|- ( ( ph /\ N e. NN0 /\ X e. S ) -> X e. S ) |
| 16 |
14 15
|
sseldd |
|- ( ( ph /\ N e. NN0 /\ X e. S ) -> X e. B ) |
| 17 |
1 7 2
|
mulg0 |
|- ( X e. B -> ( 0 .x. X ) = .0. ) |
| 18 |
16 17
|
syl |
|- ( ( ph /\ N e. NN0 /\ X e. S ) -> ( 0 .x. X ) = .0. ) |
| 19 |
13 18
|
sylan9eqr |
|- ( ( ( ph /\ N e. NN0 /\ X e. S ) /\ N = 0 ) -> ( N .x. X ) = .0. ) |
| 20 |
8
|
3ad2ant1 |
|- ( ( ph /\ N e. NN0 /\ X e. S ) -> .0. e. S ) |
| 21 |
20
|
adantr |
|- ( ( ( ph /\ N e. NN0 /\ X e. S ) /\ N = 0 ) -> .0. e. S ) |
| 22 |
19 21
|
eqeltrd |
|- ( ( ( ph /\ N e. NN0 /\ X e. S ) /\ N = 0 ) -> ( N .x. X ) e. S ) |
| 23 |
|
simp2 |
|- ( ( ph /\ N e. NN0 /\ X e. S ) -> N e. NN0 ) |
| 24 |
|
elnn0 |
|- ( N e. NN0 <-> ( N e. NN \/ N = 0 ) ) |
| 25 |
23 24
|
sylib |
|- ( ( ph /\ N e. NN0 /\ X e. S ) -> ( N e. NN \/ N = 0 ) ) |
| 26 |
12 22 25
|
mpjaodan |
|- ( ( ph /\ N e. NN0 /\ X e. S ) -> ( N .x. X ) e. S ) |