Step |
Hyp |
Ref |
Expression |
1 |
|
mulgnn0z.b |
|- B = ( Base ` G ) |
2 |
|
mulgnn0z.t |
|- .x. = ( .g ` G ) |
3 |
|
mulgnn0z.o |
|- .0. = ( 0g ` G ) |
4 |
|
elnn0 |
|- ( N e. NN0 <-> ( N e. NN \/ N = 0 ) ) |
5 |
|
id |
|- ( N e. NN -> N e. NN ) |
6 |
1 3
|
mndidcl |
|- ( G e. Mnd -> .0. e. B ) |
7 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
8 |
|
eqid |
|- seq 1 ( ( +g ` G ) , ( NN X. { .0. } ) ) = seq 1 ( ( +g ` G ) , ( NN X. { .0. } ) ) |
9 |
1 7 2 8
|
mulgnn |
|- ( ( N e. NN /\ .0. e. B ) -> ( N .x. .0. ) = ( seq 1 ( ( +g ` G ) , ( NN X. { .0. } ) ) ` N ) ) |
10 |
5 6 9
|
syl2anr |
|- ( ( G e. Mnd /\ N e. NN ) -> ( N .x. .0. ) = ( seq 1 ( ( +g ` G ) , ( NN X. { .0. } ) ) ` N ) ) |
11 |
1 7 3
|
mndlid |
|- ( ( G e. Mnd /\ .0. e. B ) -> ( .0. ( +g ` G ) .0. ) = .0. ) |
12 |
6 11
|
mpdan |
|- ( G e. Mnd -> ( .0. ( +g ` G ) .0. ) = .0. ) |
13 |
12
|
adantr |
|- ( ( G e. Mnd /\ N e. NN ) -> ( .0. ( +g ` G ) .0. ) = .0. ) |
14 |
|
simpr |
|- ( ( G e. Mnd /\ N e. NN ) -> N e. NN ) |
15 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
16 |
14 15
|
eleqtrdi |
|- ( ( G e. Mnd /\ N e. NN ) -> N e. ( ZZ>= ` 1 ) ) |
17 |
6
|
adantr |
|- ( ( G e. Mnd /\ N e. NN ) -> .0. e. B ) |
18 |
|
elfznn |
|- ( x e. ( 1 ... N ) -> x e. NN ) |
19 |
|
fvconst2g |
|- ( ( .0. e. B /\ x e. NN ) -> ( ( NN X. { .0. } ) ` x ) = .0. ) |
20 |
17 18 19
|
syl2an |
|- ( ( ( G e. Mnd /\ N e. NN ) /\ x e. ( 1 ... N ) ) -> ( ( NN X. { .0. } ) ` x ) = .0. ) |
21 |
13 16 20
|
seqid3 |
|- ( ( G e. Mnd /\ N e. NN ) -> ( seq 1 ( ( +g ` G ) , ( NN X. { .0. } ) ) ` N ) = .0. ) |
22 |
10 21
|
eqtrd |
|- ( ( G e. Mnd /\ N e. NN ) -> ( N .x. .0. ) = .0. ) |
23 |
|
oveq1 |
|- ( N = 0 -> ( N .x. .0. ) = ( 0 .x. .0. ) ) |
24 |
1 3 2
|
mulg0 |
|- ( .0. e. B -> ( 0 .x. .0. ) = .0. ) |
25 |
6 24
|
syl |
|- ( G e. Mnd -> ( 0 .x. .0. ) = .0. ) |
26 |
23 25
|
sylan9eqr |
|- ( ( G e. Mnd /\ N = 0 ) -> ( N .x. .0. ) = .0. ) |
27 |
22 26
|
jaodan |
|- ( ( G e. Mnd /\ ( N e. NN \/ N = 0 ) ) -> ( N .x. .0. ) = .0. ) |
28 |
4 27
|
sylan2b |
|- ( ( G e. Mnd /\ N e. NN0 ) -> ( N .x. .0. ) = .0. ) |