Step |
Hyp |
Ref |
Expression |
1 |
|
mulgass.b |
|- B = ( Base ` G ) |
2 |
|
mulgass.t |
|- .x. = ( .g ` G ) |
3 |
|
oveq1 |
|- ( n = 1 -> ( n x. N ) = ( 1 x. N ) ) |
4 |
3
|
oveq1d |
|- ( n = 1 -> ( ( n x. N ) .x. X ) = ( ( 1 x. N ) .x. X ) ) |
5 |
|
oveq1 |
|- ( n = 1 -> ( n .x. ( N .x. X ) ) = ( 1 .x. ( N .x. X ) ) ) |
6 |
4 5
|
eqeq12d |
|- ( n = 1 -> ( ( ( n x. N ) .x. X ) = ( n .x. ( N .x. X ) ) <-> ( ( 1 x. N ) .x. X ) = ( 1 .x. ( N .x. X ) ) ) ) |
7 |
6
|
imbi2d |
|- ( n = 1 -> ( ( ( N e. NN /\ X e. B /\ G e. Smgrp ) -> ( ( n x. N ) .x. X ) = ( n .x. ( N .x. X ) ) ) <-> ( ( N e. NN /\ X e. B /\ G e. Smgrp ) -> ( ( 1 x. N ) .x. X ) = ( 1 .x. ( N .x. X ) ) ) ) ) |
8 |
|
oveq1 |
|- ( n = m -> ( n x. N ) = ( m x. N ) ) |
9 |
8
|
oveq1d |
|- ( n = m -> ( ( n x. N ) .x. X ) = ( ( m x. N ) .x. X ) ) |
10 |
|
oveq1 |
|- ( n = m -> ( n .x. ( N .x. X ) ) = ( m .x. ( N .x. X ) ) ) |
11 |
9 10
|
eqeq12d |
|- ( n = m -> ( ( ( n x. N ) .x. X ) = ( n .x. ( N .x. X ) ) <-> ( ( m x. N ) .x. X ) = ( m .x. ( N .x. X ) ) ) ) |
12 |
11
|
imbi2d |
|- ( n = m -> ( ( ( N e. NN /\ X e. B /\ G e. Smgrp ) -> ( ( n x. N ) .x. X ) = ( n .x. ( N .x. X ) ) ) <-> ( ( N e. NN /\ X e. B /\ G e. Smgrp ) -> ( ( m x. N ) .x. X ) = ( m .x. ( N .x. X ) ) ) ) ) |
13 |
|
oveq1 |
|- ( n = ( m + 1 ) -> ( n x. N ) = ( ( m + 1 ) x. N ) ) |
14 |
13
|
oveq1d |
|- ( n = ( m + 1 ) -> ( ( n x. N ) .x. X ) = ( ( ( m + 1 ) x. N ) .x. X ) ) |
15 |
|
oveq1 |
|- ( n = ( m + 1 ) -> ( n .x. ( N .x. X ) ) = ( ( m + 1 ) .x. ( N .x. X ) ) ) |
16 |
14 15
|
eqeq12d |
|- ( n = ( m + 1 ) -> ( ( ( n x. N ) .x. X ) = ( n .x. ( N .x. X ) ) <-> ( ( ( m + 1 ) x. N ) .x. X ) = ( ( m + 1 ) .x. ( N .x. X ) ) ) ) |
17 |
16
|
imbi2d |
|- ( n = ( m + 1 ) -> ( ( ( N e. NN /\ X e. B /\ G e. Smgrp ) -> ( ( n x. N ) .x. X ) = ( n .x. ( N .x. X ) ) ) <-> ( ( N e. NN /\ X e. B /\ G e. Smgrp ) -> ( ( ( m + 1 ) x. N ) .x. X ) = ( ( m + 1 ) .x. ( N .x. X ) ) ) ) ) |
18 |
|
oveq1 |
|- ( n = M -> ( n x. N ) = ( M x. N ) ) |
19 |
18
|
oveq1d |
|- ( n = M -> ( ( n x. N ) .x. X ) = ( ( M x. N ) .x. X ) ) |
20 |
|
oveq1 |
|- ( n = M -> ( n .x. ( N .x. X ) ) = ( M .x. ( N .x. X ) ) ) |
21 |
19 20
|
eqeq12d |
|- ( n = M -> ( ( ( n x. N ) .x. X ) = ( n .x. ( N .x. X ) ) <-> ( ( M x. N ) .x. X ) = ( M .x. ( N .x. X ) ) ) ) |
22 |
21
|
imbi2d |
|- ( n = M -> ( ( ( N e. NN /\ X e. B /\ G e. Smgrp ) -> ( ( n x. N ) .x. X ) = ( n .x. ( N .x. X ) ) ) <-> ( ( N e. NN /\ X e. B /\ G e. Smgrp ) -> ( ( M x. N ) .x. X ) = ( M .x. ( N .x. X ) ) ) ) ) |
23 |
|
nncn |
|- ( N e. NN -> N e. CC ) |
24 |
23
|
mulid2d |
|- ( N e. NN -> ( 1 x. N ) = N ) |
25 |
24
|
3ad2ant1 |
|- ( ( N e. NN /\ X e. B /\ G e. Smgrp ) -> ( 1 x. N ) = N ) |
26 |
25
|
oveq1d |
|- ( ( N e. NN /\ X e. B /\ G e. Smgrp ) -> ( ( 1 x. N ) .x. X ) = ( N .x. X ) ) |
27 |
|
sgrpmgm |
|- ( G e. Smgrp -> G e. Mgm ) |
28 |
1 2
|
mulgnncl |
|- ( ( G e. Mgm /\ N e. NN /\ X e. B ) -> ( N .x. X ) e. B ) |
29 |
27 28
|
syl3an1 |
|- ( ( G e. Smgrp /\ N e. NN /\ X e. B ) -> ( N .x. X ) e. B ) |
30 |
29
|
3coml |
|- ( ( N e. NN /\ X e. B /\ G e. Smgrp ) -> ( N .x. X ) e. B ) |
31 |
1 2
|
mulg1 |
|- ( ( N .x. X ) e. B -> ( 1 .x. ( N .x. X ) ) = ( N .x. X ) ) |
32 |
30 31
|
syl |
|- ( ( N e. NN /\ X e. B /\ G e. Smgrp ) -> ( 1 .x. ( N .x. X ) ) = ( N .x. X ) ) |
33 |
26 32
|
eqtr4d |
|- ( ( N e. NN /\ X e. B /\ G e. Smgrp ) -> ( ( 1 x. N ) .x. X ) = ( 1 .x. ( N .x. X ) ) ) |
34 |
|
oveq1 |
|- ( ( ( m x. N ) .x. X ) = ( m .x. ( N .x. X ) ) -> ( ( ( m x. N ) .x. X ) ( +g ` G ) ( N .x. X ) ) = ( ( m .x. ( N .x. X ) ) ( +g ` G ) ( N .x. X ) ) ) |
35 |
|
nncn |
|- ( m e. NN -> m e. CC ) |
36 |
35
|
adantr |
|- ( ( m e. NN /\ ( N e. NN /\ X e. B /\ G e. Smgrp ) ) -> m e. CC ) |
37 |
|
simpr1 |
|- ( ( m e. NN /\ ( N e. NN /\ X e. B /\ G e. Smgrp ) ) -> N e. NN ) |
38 |
37
|
nncnd |
|- ( ( m e. NN /\ ( N e. NN /\ X e. B /\ G e. Smgrp ) ) -> N e. CC ) |
39 |
36 38
|
adddirp1d |
|- ( ( m e. NN /\ ( N e. NN /\ X e. B /\ G e. Smgrp ) ) -> ( ( m + 1 ) x. N ) = ( ( m x. N ) + N ) ) |
40 |
39
|
oveq1d |
|- ( ( m e. NN /\ ( N e. NN /\ X e. B /\ G e. Smgrp ) ) -> ( ( ( m + 1 ) x. N ) .x. X ) = ( ( ( m x. N ) + N ) .x. X ) ) |
41 |
|
simpr3 |
|- ( ( m e. NN /\ ( N e. NN /\ X e. B /\ G e. Smgrp ) ) -> G e. Smgrp ) |
42 |
|
nnmulcl |
|- ( ( m e. NN /\ N e. NN ) -> ( m x. N ) e. NN ) |
43 |
42
|
3ad2antr1 |
|- ( ( m e. NN /\ ( N e. NN /\ X e. B /\ G e. Smgrp ) ) -> ( m x. N ) e. NN ) |
44 |
|
simpr2 |
|- ( ( m e. NN /\ ( N e. NN /\ X e. B /\ G e. Smgrp ) ) -> X e. B ) |
45 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
46 |
1 2 45
|
mulgnndir |
|- ( ( G e. Smgrp /\ ( ( m x. N ) e. NN /\ N e. NN /\ X e. B ) ) -> ( ( ( m x. N ) + N ) .x. X ) = ( ( ( m x. N ) .x. X ) ( +g ` G ) ( N .x. X ) ) ) |
47 |
41 43 37 44 46
|
syl13anc |
|- ( ( m e. NN /\ ( N e. NN /\ X e. B /\ G e. Smgrp ) ) -> ( ( ( m x. N ) + N ) .x. X ) = ( ( ( m x. N ) .x. X ) ( +g ` G ) ( N .x. X ) ) ) |
48 |
40 47
|
eqtrd |
|- ( ( m e. NN /\ ( N e. NN /\ X e. B /\ G e. Smgrp ) ) -> ( ( ( m + 1 ) x. N ) .x. X ) = ( ( ( m x. N ) .x. X ) ( +g ` G ) ( N .x. X ) ) ) |
49 |
1 2 45
|
mulgnnp1 |
|- ( ( m e. NN /\ ( N .x. X ) e. B ) -> ( ( m + 1 ) .x. ( N .x. X ) ) = ( ( m .x. ( N .x. X ) ) ( +g ` G ) ( N .x. X ) ) ) |
50 |
30 49
|
sylan2 |
|- ( ( m e. NN /\ ( N e. NN /\ X e. B /\ G e. Smgrp ) ) -> ( ( m + 1 ) .x. ( N .x. X ) ) = ( ( m .x. ( N .x. X ) ) ( +g ` G ) ( N .x. X ) ) ) |
51 |
48 50
|
eqeq12d |
|- ( ( m e. NN /\ ( N e. NN /\ X e. B /\ G e. Smgrp ) ) -> ( ( ( ( m + 1 ) x. N ) .x. X ) = ( ( m + 1 ) .x. ( N .x. X ) ) <-> ( ( ( m x. N ) .x. X ) ( +g ` G ) ( N .x. X ) ) = ( ( m .x. ( N .x. X ) ) ( +g ` G ) ( N .x. X ) ) ) ) |
52 |
34 51
|
syl5ibr |
|- ( ( m e. NN /\ ( N e. NN /\ X e. B /\ G e. Smgrp ) ) -> ( ( ( m x. N ) .x. X ) = ( m .x. ( N .x. X ) ) -> ( ( ( m + 1 ) x. N ) .x. X ) = ( ( m + 1 ) .x. ( N .x. X ) ) ) ) |
53 |
52
|
ex |
|- ( m e. NN -> ( ( N e. NN /\ X e. B /\ G e. Smgrp ) -> ( ( ( m x. N ) .x. X ) = ( m .x. ( N .x. X ) ) -> ( ( ( m + 1 ) x. N ) .x. X ) = ( ( m + 1 ) .x. ( N .x. X ) ) ) ) ) |
54 |
53
|
a2d |
|- ( m e. NN -> ( ( ( N e. NN /\ X e. B /\ G e. Smgrp ) -> ( ( m x. N ) .x. X ) = ( m .x. ( N .x. X ) ) ) -> ( ( N e. NN /\ X e. B /\ G e. Smgrp ) -> ( ( ( m + 1 ) x. N ) .x. X ) = ( ( m + 1 ) .x. ( N .x. X ) ) ) ) ) |
55 |
7 12 17 22 33 54
|
nnind |
|- ( M e. NN -> ( ( N e. NN /\ X e. B /\ G e. Smgrp ) -> ( ( M x. N ) .x. X ) = ( M .x. ( N .x. X ) ) ) ) |
56 |
55
|
3expd |
|- ( M e. NN -> ( N e. NN -> ( X e. B -> ( G e. Smgrp -> ( ( M x. N ) .x. X ) = ( M .x. ( N .x. X ) ) ) ) ) ) |
57 |
56
|
com4r |
|- ( G e. Smgrp -> ( M e. NN -> ( N e. NN -> ( X e. B -> ( ( M x. N ) .x. X ) = ( M .x. ( N .x. X ) ) ) ) ) ) |
58 |
57
|
3imp2 |
|- ( ( G e. Smgrp /\ ( M e. NN /\ N e. NN /\ X e. B ) ) -> ( ( M x. N ) .x. X ) = ( M .x. ( N .x. X ) ) ) |