| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mulgnngsum.b |  |-  B = ( Base ` G ) | 
						
							| 2 |  | mulgnngsum.t |  |-  .x. = ( .g ` G ) | 
						
							| 3 |  | mulgnngsum.f |  |-  F = ( x e. ( 1 ... N ) |-> X ) | 
						
							| 4 |  | elnnuz |  |-  ( N e. NN <-> N e. ( ZZ>= ` 1 ) ) | 
						
							| 5 | 4 | biimpi |  |-  ( N e. NN -> N e. ( ZZ>= ` 1 ) ) | 
						
							| 6 | 5 | adantr |  |-  ( ( N e. NN /\ X e. B ) -> N e. ( ZZ>= ` 1 ) ) | 
						
							| 7 | 3 | a1i |  |-  ( ( ( N e. NN /\ X e. B ) /\ i e. ( 1 ... N ) ) -> F = ( x e. ( 1 ... N ) |-> X ) ) | 
						
							| 8 |  | eqidd |  |-  ( ( ( ( N e. NN /\ X e. B ) /\ i e. ( 1 ... N ) ) /\ x = i ) -> X = X ) | 
						
							| 9 |  | simpr |  |-  ( ( ( N e. NN /\ X e. B ) /\ i e. ( 1 ... N ) ) -> i e. ( 1 ... N ) ) | 
						
							| 10 |  | simpr |  |-  ( ( N e. NN /\ X e. B ) -> X e. B ) | 
						
							| 11 | 10 | adantr |  |-  ( ( ( N e. NN /\ X e. B ) /\ i e. ( 1 ... N ) ) -> X e. B ) | 
						
							| 12 | 7 8 9 11 | fvmptd |  |-  ( ( ( N e. NN /\ X e. B ) /\ i e. ( 1 ... N ) ) -> ( F ` i ) = X ) | 
						
							| 13 |  | elfznn |  |-  ( i e. ( 1 ... N ) -> i e. NN ) | 
						
							| 14 |  | fvconst2g |  |-  ( ( X e. B /\ i e. NN ) -> ( ( NN X. { X } ) ` i ) = X ) | 
						
							| 15 | 10 13 14 | syl2an |  |-  ( ( ( N e. NN /\ X e. B ) /\ i e. ( 1 ... N ) ) -> ( ( NN X. { X } ) ` i ) = X ) | 
						
							| 16 | 12 15 | eqtr4d |  |-  ( ( ( N e. NN /\ X e. B ) /\ i e. ( 1 ... N ) ) -> ( F ` i ) = ( ( NN X. { X } ) ` i ) ) | 
						
							| 17 | 6 16 | seqfveq |  |-  ( ( N e. NN /\ X e. B ) -> ( seq 1 ( ( +g ` G ) , F ) ` N ) = ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` N ) ) | 
						
							| 18 |  | eqid |  |-  ( +g ` G ) = ( +g ` G ) | 
						
							| 19 |  | elfvex |  |-  ( X e. ( Base ` G ) -> G e. _V ) | 
						
							| 20 | 19 1 | eleq2s |  |-  ( X e. B -> G e. _V ) | 
						
							| 21 | 20 | adantl |  |-  ( ( N e. NN /\ X e. B ) -> G e. _V ) | 
						
							| 22 | 10 | adantr |  |-  ( ( ( N e. NN /\ X e. B ) /\ x e. ( 1 ... N ) ) -> X e. B ) | 
						
							| 23 | 22 3 | fmptd |  |-  ( ( N e. NN /\ X e. B ) -> F : ( 1 ... N ) --> B ) | 
						
							| 24 | 1 18 21 6 23 | gsumval2 |  |-  ( ( N e. NN /\ X e. B ) -> ( G gsum F ) = ( seq 1 ( ( +g ` G ) , F ) ` N ) ) | 
						
							| 25 |  | eqid |  |-  seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) = seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) | 
						
							| 26 | 1 18 2 25 | mulgnn |  |-  ( ( N e. NN /\ X e. B ) -> ( N .x. X ) = ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` N ) ) | 
						
							| 27 | 17 24 26 | 3eqtr4rd |  |-  ( ( N e. NN /\ X e. B ) -> ( N .x. X ) = ( G gsum F ) ) |