Step |
Hyp |
Ref |
Expression |
1 |
|
mulgnngsum.b |
|- B = ( Base ` G ) |
2 |
|
mulgnngsum.t |
|- .x. = ( .g ` G ) |
3 |
|
mulgnngsum.f |
|- F = ( x e. ( 1 ... N ) |-> X ) |
4 |
|
elnnuz |
|- ( N e. NN <-> N e. ( ZZ>= ` 1 ) ) |
5 |
4
|
biimpi |
|- ( N e. NN -> N e. ( ZZ>= ` 1 ) ) |
6 |
5
|
adantr |
|- ( ( N e. NN /\ X e. B ) -> N e. ( ZZ>= ` 1 ) ) |
7 |
3
|
a1i |
|- ( ( ( N e. NN /\ X e. B ) /\ i e. ( 1 ... N ) ) -> F = ( x e. ( 1 ... N ) |-> X ) ) |
8 |
|
eqidd |
|- ( ( ( ( N e. NN /\ X e. B ) /\ i e. ( 1 ... N ) ) /\ x = i ) -> X = X ) |
9 |
|
simpr |
|- ( ( ( N e. NN /\ X e. B ) /\ i e. ( 1 ... N ) ) -> i e. ( 1 ... N ) ) |
10 |
|
simpr |
|- ( ( N e. NN /\ X e. B ) -> X e. B ) |
11 |
10
|
adantr |
|- ( ( ( N e. NN /\ X e. B ) /\ i e. ( 1 ... N ) ) -> X e. B ) |
12 |
7 8 9 11
|
fvmptd |
|- ( ( ( N e. NN /\ X e. B ) /\ i e. ( 1 ... N ) ) -> ( F ` i ) = X ) |
13 |
|
elfznn |
|- ( i e. ( 1 ... N ) -> i e. NN ) |
14 |
|
fvconst2g |
|- ( ( X e. B /\ i e. NN ) -> ( ( NN X. { X } ) ` i ) = X ) |
15 |
10 13 14
|
syl2an |
|- ( ( ( N e. NN /\ X e. B ) /\ i e. ( 1 ... N ) ) -> ( ( NN X. { X } ) ` i ) = X ) |
16 |
12 15
|
eqtr4d |
|- ( ( ( N e. NN /\ X e. B ) /\ i e. ( 1 ... N ) ) -> ( F ` i ) = ( ( NN X. { X } ) ` i ) ) |
17 |
6 16
|
seqfveq |
|- ( ( N e. NN /\ X e. B ) -> ( seq 1 ( ( +g ` G ) , F ) ` N ) = ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` N ) ) |
18 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
19 |
|
elfvex |
|- ( X e. ( Base ` G ) -> G e. _V ) |
20 |
19 1
|
eleq2s |
|- ( X e. B -> G e. _V ) |
21 |
20
|
adantl |
|- ( ( N e. NN /\ X e. B ) -> G e. _V ) |
22 |
10
|
adantr |
|- ( ( ( N e. NN /\ X e. B ) /\ x e. ( 1 ... N ) ) -> X e. B ) |
23 |
22 3
|
fmptd |
|- ( ( N e. NN /\ X e. B ) -> F : ( 1 ... N ) --> B ) |
24 |
1 18 21 6 23
|
gsumval2 |
|- ( ( N e. NN /\ X e. B ) -> ( G gsum F ) = ( seq 1 ( ( +g ` G ) , F ) ` N ) ) |
25 |
|
eqid |
|- seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) = seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) |
26 |
1 18 2 25
|
mulgnn |
|- ( ( N e. NN /\ X e. B ) -> ( N .x. X ) = ( seq 1 ( ( +g ` G ) , ( NN X. { X } ) ) ` N ) ) |
27 |
17 24 26
|
3eqtr4rd |
|- ( ( N e. NN /\ X e. B ) -> ( N .x. X ) = ( G gsum F ) ) |