| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mulg1.b |
|- B = ( Base ` G ) |
| 2 |
|
mulg1.m |
|- .x. = ( .g ` G ) |
| 3 |
|
mulgnnp1.p |
|- .+ = ( +g ` G ) |
| 4 |
|
simpl |
|- ( ( N e. NN /\ X e. B ) -> N e. NN ) |
| 5 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 6 |
4 5
|
eleqtrdi |
|- ( ( N e. NN /\ X e. B ) -> N e. ( ZZ>= ` 1 ) ) |
| 7 |
|
seqp1 |
|- ( N e. ( ZZ>= ` 1 ) -> ( seq 1 ( .+ , ( NN X. { X } ) ) ` ( N + 1 ) ) = ( ( seq 1 ( .+ , ( NN X. { X } ) ) ` N ) .+ ( ( NN X. { X } ) ` ( N + 1 ) ) ) ) |
| 8 |
6 7
|
syl |
|- ( ( N e. NN /\ X e. B ) -> ( seq 1 ( .+ , ( NN X. { X } ) ) ` ( N + 1 ) ) = ( ( seq 1 ( .+ , ( NN X. { X } ) ) ` N ) .+ ( ( NN X. { X } ) ` ( N + 1 ) ) ) ) |
| 9 |
|
id |
|- ( X e. B -> X e. B ) |
| 10 |
|
peano2nn |
|- ( N e. NN -> ( N + 1 ) e. NN ) |
| 11 |
|
fvconst2g |
|- ( ( X e. B /\ ( N + 1 ) e. NN ) -> ( ( NN X. { X } ) ` ( N + 1 ) ) = X ) |
| 12 |
9 10 11
|
syl2anr |
|- ( ( N e. NN /\ X e. B ) -> ( ( NN X. { X } ) ` ( N + 1 ) ) = X ) |
| 13 |
12
|
oveq2d |
|- ( ( N e. NN /\ X e. B ) -> ( ( seq 1 ( .+ , ( NN X. { X } ) ) ` N ) .+ ( ( NN X. { X } ) ` ( N + 1 ) ) ) = ( ( seq 1 ( .+ , ( NN X. { X } ) ) ` N ) .+ X ) ) |
| 14 |
8 13
|
eqtrd |
|- ( ( N e. NN /\ X e. B ) -> ( seq 1 ( .+ , ( NN X. { X } ) ) ` ( N + 1 ) ) = ( ( seq 1 ( .+ , ( NN X. { X } ) ) ` N ) .+ X ) ) |
| 15 |
|
eqid |
|- seq 1 ( .+ , ( NN X. { X } ) ) = seq 1 ( .+ , ( NN X. { X } ) ) |
| 16 |
1 3 2 15
|
mulgnn |
|- ( ( ( N + 1 ) e. NN /\ X e. B ) -> ( ( N + 1 ) .x. X ) = ( seq 1 ( .+ , ( NN X. { X } ) ) ` ( N + 1 ) ) ) |
| 17 |
10 16
|
sylan |
|- ( ( N e. NN /\ X e. B ) -> ( ( N + 1 ) .x. X ) = ( seq 1 ( .+ , ( NN X. { X } ) ) ` ( N + 1 ) ) ) |
| 18 |
1 3 2 15
|
mulgnn |
|- ( ( N e. NN /\ X e. B ) -> ( N .x. X ) = ( seq 1 ( .+ , ( NN X. { X } ) ) ` N ) ) |
| 19 |
18
|
oveq1d |
|- ( ( N e. NN /\ X e. B ) -> ( ( N .x. X ) .+ X ) = ( ( seq 1 ( .+ , ( NN X. { X } ) ) ` N ) .+ X ) ) |
| 20 |
14 17 19
|
3eqtr4d |
|- ( ( N e. NN /\ X e. B ) -> ( ( N + 1 ) .x. X ) = ( ( N .x. X ) .+ X ) ) |