| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mulgnnsubcl.b |
|- B = ( Base ` G ) |
| 2 |
|
mulgnnsubcl.t |
|- .x. = ( .g ` G ) |
| 3 |
|
mulgnnsubcl.p |
|- .+ = ( +g ` G ) |
| 4 |
|
mulgnnsubcl.g |
|- ( ph -> G e. V ) |
| 5 |
|
mulgnnsubcl.s |
|- ( ph -> S C_ B ) |
| 6 |
|
mulgnnsubcl.c |
|- ( ( ph /\ x e. S /\ y e. S ) -> ( x .+ y ) e. S ) |
| 7 |
|
simp2 |
|- ( ( ph /\ N e. NN /\ X e. S ) -> N e. NN ) |
| 8 |
5
|
3ad2ant1 |
|- ( ( ph /\ N e. NN /\ X e. S ) -> S C_ B ) |
| 9 |
|
simp3 |
|- ( ( ph /\ N e. NN /\ X e. S ) -> X e. S ) |
| 10 |
8 9
|
sseldd |
|- ( ( ph /\ N e. NN /\ X e. S ) -> X e. B ) |
| 11 |
|
eqid |
|- seq 1 ( .+ , ( NN X. { X } ) ) = seq 1 ( .+ , ( NN X. { X } ) ) |
| 12 |
1 3 2 11
|
mulgnn |
|- ( ( N e. NN /\ X e. B ) -> ( N .x. X ) = ( seq 1 ( .+ , ( NN X. { X } ) ) ` N ) ) |
| 13 |
7 10 12
|
syl2anc |
|- ( ( ph /\ N e. NN /\ X e. S ) -> ( N .x. X ) = ( seq 1 ( .+ , ( NN X. { X } ) ) ` N ) ) |
| 14 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 15 |
7 14
|
eleqtrdi |
|- ( ( ph /\ N e. NN /\ X e. S ) -> N e. ( ZZ>= ` 1 ) ) |
| 16 |
|
elfznn |
|- ( x e. ( 1 ... N ) -> x e. NN ) |
| 17 |
|
fvconst2g |
|- ( ( X e. S /\ x e. NN ) -> ( ( NN X. { X } ) ` x ) = X ) |
| 18 |
9 16 17
|
syl2an |
|- ( ( ( ph /\ N e. NN /\ X e. S ) /\ x e. ( 1 ... N ) ) -> ( ( NN X. { X } ) ` x ) = X ) |
| 19 |
|
simpl3 |
|- ( ( ( ph /\ N e. NN /\ X e. S ) /\ x e. ( 1 ... N ) ) -> X e. S ) |
| 20 |
18 19
|
eqeltrd |
|- ( ( ( ph /\ N e. NN /\ X e. S ) /\ x e. ( 1 ... N ) ) -> ( ( NN X. { X } ) ` x ) e. S ) |
| 21 |
6
|
3expb |
|- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x .+ y ) e. S ) |
| 22 |
21
|
3ad2antl1 |
|- ( ( ( ph /\ N e. NN /\ X e. S ) /\ ( x e. S /\ y e. S ) ) -> ( x .+ y ) e. S ) |
| 23 |
15 20 22
|
seqcl |
|- ( ( ph /\ N e. NN /\ X e. S ) -> ( seq 1 ( .+ , ( NN X. { X } ) ) ` N ) e. S ) |
| 24 |
13 23
|
eqeltrd |
|- ( ( ph /\ N e. NN /\ X e. S ) -> ( N .x. X ) e. S ) |