| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mulgnndir.b |  |-  B = ( Base ` G ) | 
						
							| 2 |  | mulgnndir.t |  |-  .x. = ( .g ` G ) | 
						
							| 3 |  | mulgnndir.p |  |-  .+ = ( +g ` G ) | 
						
							| 4 |  | 1z |  |-  1 e. ZZ | 
						
							| 5 | 1 2 3 | mulgdir |  |-  ( ( G e. Grp /\ ( N e. ZZ /\ 1 e. ZZ /\ X e. B ) ) -> ( ( N + 1 ) .x. X ) = ( ( N .x. X ) .+ ( 1 .x. X ) ) ) | 
						
							| 6 | 4 5 | mp3anr2 |  |-  ( ( G e. Grp /\ ( N e. ZZ /\ X e. B ) ) -> ( ( N + 1 ) .x. X ) = ( ( N .x. X ) .+ ( 1 .x. X ) ) ) | 
						
							| 7 | 6 | 3impb |  |-  ( ( G e. Grp /\ N e. ZZ /\ X e. B ) -> ( ( N + 1 ) .x. X ) = ( ( N .x. X ) .+ ( 1 .x. X ) ) ) | 
						
							| 8 | 1 2 | mulg1 |  |-  ( X e. B -> ( 1 .x. X ) = X ) | 
						
							| 9 | 8 | 3ad2ant3 |  |-  ( ( G e. Grp /\ N e. ZZ /\ X e. B ) -> ( 1 .x. X ) = X ) | 
						
							| 10 | 9 | oveq2d |  |-  ( ( G e. Grp /\ N e. ZZ /\ X e. B ) -> ( ( N .x. X ) .+ ( 1 .x. X ) ) = ( ( N .x. X ) .+ X ) ) | 
						
							| 11 | 7 10 | eqtrd |  |-  ( ( G e. Grp /\ N e. ZZ /\ X e. B ) -> ( ( N + 1 ) .x. X ) = ( ( N .x. X ) .+ X ) ) |