Step |
Hyp |
Ref |
Expression |
1 |
|
mulgpropd.m |
|- .x. = ( .g ` G ) |
2 |
|
mulgpropd.n |
|- .X. = ( .g ` H ) |
3 |
|
mulgpropd.b1 |
|- ( ph -> B = ( Base ` G ) ) |
4 |
|
mulgpropd.b2 |
|- ( ph -> B = ( Base ` H ) ) |
5 |
|
mulgpropd.i |
|- ( ph -> B C_ K ) |
6 |
|
mulgpropd.k |
|- ( ( ph /\ ( x e. K /\ y e. K ) ) -> ( x ( +g ` G ) y ) e. K ) |
7 |
|
mulgpropd.e |
|- ( ( ph /\ ( x e. K /\ y e. K ) ) -> ( x ( +g ` G ) y ) = ( x ( +g ` H ) y ) ) |
8 |
|
ssel |
|- ( B C_ K -> ( x e. B -> x e. K ) ) |
9 |
|
ssel |
|- ( B C_ K -> ( y e. B -> y e. K ) ) |
10 |
8 9
|
anim12d |
|- ( B C_ K -> ( ( x e. B /\ y e. B ) -> ( x e. K /\ y e. K ) ) ) |
11 |
5 10
|
syl |
|- ( ph -> ( ( x e. B /\ y e. B ) -> ( x e. K /\ y e. K ) ) ) |
12 |
11
|
imp |
|- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x e. K /\ y e. K ) ) |
13 |
12 7
|
syldan |
|- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` G ) y ) = ( x ( +g ` H ) y ) ) |
14 |
3 4 13
|
grpidpropd |
|- ( ph -> ( 0g ` G ) = ( 0g ` H ) ) |
15 |
14
|
3ad2ant1 |
|- ( ( ph /\ a e. ZZ /\ b e. B ) -> ( 0g ` G ) = ( 0g ` H ) ) |
16 |
|
1zzd |
|- ( ( ph /\ a e. ZZ /\ b e. B ) -> 1 e. ZZ ) |
17 |
|
vex |
|- b e. _V |
18 |
17
|
fvconst2 |
|- ( x e. NN -> ( ( NN X. { b } ) ` x ) = b ) |
19 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
20 |
19
|
eqcomi |
|- ( ZZ>= ` 1 ) = NN |
21 |
18 20
|
eleq2s |
|- ( x e. ( ZZ>= ` 1 ) -> ( ( NN X. { b } ) ` x ) = b ) |
22 |
21
|
adantl |
|- ( ( ( ph /\ a e. ZZ /\ b e. B ) /\ x e. ( ZZ>= ` 1 ) ) -> ( ( NN X. { b } ) ` x ) = b ) |
23 |
5
|
3ad2ant1 |
|- ( ( ph /\ a e. ZZ /\ b e. B ) -> B C_ K ) |
24 |
|
simp3 |
|- ( ( ph /\ a e. ZZ /\ b e. B ) -> b e. B ) |
25 |
23 24
|
sseldd |
|- ( ( ph /\ a e. ZZ /\ b e. B ) -> b e. K ) |
26 |
25
|
adantr |
|- ( ( ( ph /\ a e. ZZ /\ b e. B ) /\ x e. ( ZZ>= ` 1 ) ) -> b e. K ) |
27 |
22 26
|
eqeltrd |
|- ( ( ( ph /\ a e. ZZ /\ b e. B ) /\ x e. ( ZZ>= ` 1 ) ) -> ( ( NN X. { b } ) ` x ) e. K ) |
28 |
6
|
3ad2antl1 |
|- ( ( ( ph /\ a e. ZZ /\ b e. B ) /\ ( x e. K /\ y e. K ) ) -> ( x ( +g ` G ) y ) e. K ) |
29 |
7
|
3ad2antl1 |
|- ( ( ( ph /\ a e. ZZ /\ b e. B ) /\ ( x e. K /\ y e. K ) ) -> ( x ( +g ` G ) y ) = ( x ( +g ` H ) y ) ) |
30 |
16 27 28 29
|
seqfeq3 |
|- ( ( ph /\ a e. ZZ /\ b e. B ) -> seq 1 ( ( +g ` G ) , ( NN X. { b } ) ) = seq 1 ( ( +g ` H ) , ( NN X. { b } ) ) ) |
31 |
30
|
fveq1d |
|- ( ( ph /\ a e. ZZ /\ b e. B ) -> ( seq 1 ( ( +g ` G ) , ( NN X. { b } ) ) ` a ) = ( seq 1 ( ( +g ` H ) , ( NN X. { b } ) ) ` a ) ) |
32 |
3 4 13
|
grpinvpropd |
|- ( ph -> ( invg ` G ) = ( invg ` H ) ) |
33 |
32
|
3ad2ant1 |
|- ( ( ph /\ a e. ZZ /\ b e. B ) -> ( invg ` G ) = ( invg ` H ) ) |
34 |
30
|
fveq1d |
|- ( ( ph /\ a e. ZZ /\ b e. B ) -> ( seq 1 ( ( +g ` G ) , ( NN X. { b } ) ) ` -u a ) = ( seq 1 ( ( +g ` H ) , ( NN X. { b } ) ) ` -u a ) ) |
35 |
33 34
|
fveq12d |
|- ( ( ph /\ a e. ZZ /\ b e. B ) -> ( ( invg ` G ) ` ( seq 1 ( ( +g ` G ) , ( NN X. { b } ) ) ` -u a ) ) = ( ( invg ` H ) ` ( seq 1 ( ( +g ` H ) , ( NN X. { b } ) ) ` -u a ) ) ) |
36 |
31 35
|
ifeq12d |
|- ( ( ph /\ a e. ZZ /\ b e. B ) -> if ( 0 < a , ( seq 1 ( ( +g ` G ) , ( NN X. { b } ) ) ` a ) , ( ( invg ` G ) ` ( seq 1 ( ( +g ` G ) , ( NN X. { b } ) ) ` -u a ) ) ) = if ( 0 < a , ( seq 1 ( ( +g ` H ) , ( NN X. { b } ) ) ` a ) , ( ( invg ` H ) ` ( seq 1 ( ( +g ` H ) , ( NN X. { b } ) ) ` -u a ) ) ) ) |
37 |
15 36
|
ifeq12d |
|- ( ( ph /\ a e. ZZ /\ b e. B ) -> if ( a = 0 , ( 0g ` G ) , if ( 0 < a , ( seq 1 ( ( +g ` G ) , ( NN X. { b } ) ) ` a ) , ( ( invg ` G ) ` ( seq 1 ( ( +g ` G ) , ( NN X. { b } ) ) ` -u a ) ) ) ) = if ( a = 0 , ( 0g ` H ) , if ( 0 < a , ( seq 1 ( ( +g ` H ) , ( NN X. { b } ) ) ` a ) , ( ( invg ` H ) ` ( seq 1 ( ( +g ` H ) , ( NN X. { b } ) ) ` -u a ) ) ) ) ) |
38 |
37
|
mpoeq3dva |
|- ( ph -> ( a e. ZZ , b e. B |-> if ( a = 0 , ( 0g ` G ) , if ( 0 < a , ( seq 1 ( ( +g ` G ) , ( NN X. { b } ) ) ` a ) , ( ( invg ` G ) ` ( seq 1 ( ( +g ` G ) , ( NN X. { b } ) ) ` -u a ) ) ) ) ) = ( a e. ZZ , b e. B |-> if ( a = 0 , ( 0g ` H ) , if ( 0 < a , ( seq 1 ( ( +g ` H ) , ( NN X. { b } ) ) ` a ) , ( ( invg ` H ) ` ( seq 1 ( ( +g ` H ) , ( NN X. { b } ) ) ` -u a ) ) ) ) ) ) |
39 |
|
eqidd |
|- ( ph -> ZZ = ZZ ) |
40 |
|
eqidd |
|- ( ph -> if ( a = 0 , ( 0g ` G ) , if ( 0 < a , ( seq 1 ( ( +g ` G ) , ( NN X. { b } ) ) ` a ) , ( ( invg ` G ) ` ( seq 1 ( ( +g ` G ) , ( NN X. { b } ) ) ` -u a ) ) ) ) = if ( a = 0 , ( 0g ` G ) , if ( 0 < a , ( seq 1 ( ( +g ` G ) , ( NN X. { b } ) ) ` a ) , ( ( invg ` G ) ` ( seq 1 ( ( +g ` G ) , ( NN X. { b } ) ) ` -u a ) ) ) ) ) |
41 |
39 3 40
|
mpoeq123dv |
|- ( ph -> ( a e. ZZ , b e. B |-> if ( a = 0 , ( 0g ` G ) , if ( 0 < a , ( seq 1 ( ( +g ` G ) , ( NN X. { b } ) ) ` a ) , ( ( invg ` G ) ` ( seq 1 ( ( +g ` G ) , ( NN X. { b } ) ) ` -u a ) ) ) ) ) = ( a e. ZZ , b e. ( Base ` G ) |-> if ( a = 0 , ( 0g ` G ) , if ( 0 < a , ( seq 1 ( ( +g ` G ) , ( NN X. { b } ) ) ` a ) , ( ( invg ` G ) ` ( seq 1 ( ( +g ` G ) , ( NN X. { b } ) ) ` -u a ) ) ) ) ) ) |
42 |
|
eqidd |
|- ( ph -> if ( a = 0 , ( 0g ` H ) , if ( 0 < a , ( seq 1 ( ( +g ` H ) , ( NN X. { b } ) ) ` a ) , ( ( invg ` H ) ` ( seq 1 ( ( +g ` H ) , ( NN X. { b } ) ) ` -u a ) ) ) ) = if ( a = 0 , ( 0g ` H ) , if ( 0 < a , ( seq 1 ( ( +g ` H ) , ( NN X. { b } ) ) ` a ) , ( ( invg ` H ) ` ( seq 1 ( ( +g ` H ) , ( NN X. { b } ) ) ` -u a ) ) ) ) ) |
43 |
39 4 42
|
mpoeq123dv |
|- ( ph -> ( a e. ZZ , b e. B |-> if ( a = 0 , ( 0g ` H ) , if ( 0 < a , ( seq 1 ( ( +g ` H ) , ( NN X. { b } ) ) ` a ) , ( ( invg ` H ) ` ( seq 1 ( ( +g ` H ) , ( NN X. { b } ) ) ` -u a ) ) ) ) ) = ( a e. ZZ , b e. ( Base ` H ) |-> if ( a = 0 , ( 0g ` H ) , if ( 0 < a , ( seq 1 ( ( +g ` H ) , ( NN X. { b } ) ) ` a ) , ( ( invg ` H ) ` ( seq 1 ( ( +g ` H ) , ( NN X. { b } ) ) ` -u a ) ) ) ) ) ) |
44 |
38 41 43
|
3eqtr3d |
|- ( ph -> ( a e. ZZ , b e. ( Base ` G ) |-> if ( a = 0 , ( 0g ` G ) , if ( 0 < a , ( seq 1 ( ( +g ` G ) , ( NN X. { b } ) ) ` a ) , ( ( invg ` G ) ` ( seq 1 ( ( +g ` G ) , ( NN X. { b } ) ) ` -u a ) ) ) ) ) = ( a e. ZZ , b e. ( Base ` H ) |-> if ( a = 0 , ( 0g ` H ) , if ( 0 < a , ( seq 1 ( ( +g ` H ) , ( NN X. { b } ) ) ` a ) , ( ( invg ` H ) ` ( seq 1 ( ( +g ` H ) , ( NN X. { b } ) ) ` -u a ) ) ) ) ) ) |
45 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
46 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
47 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
48 |
|
eqid |
|- ( invg ` G ) = ( invg ` G ) |
49 |
45 46 47 48 1
|
mulgfval |
|- .x. = ( a e. ZZ , b e. ( Base ` G ) |-> if ( a = 0 , ( 0g ` G ) , if ( 0 < a , ( seq 1 ( ( +g ` G ) , ( NN X. { b } ) ) ` a ) , ( ( invg ` G ) ` ( seq 1 ( ( +g ` G ) , ( NN X. { b } ) ) ` -u a ) ) ) ) ) |
50 |
|
eqid |
|- ( Base ` H ) = ( Base ` H ) |
51 |
|
eqid |
|- ( +g ` H ) = ( +g ` H ) |
52 |
|
eqid |
|- ( 0g ` H ) = ( 0g ` H ) |
53 |
|
eqid |
|- ( invg ` H ) = ( invg ` H ) |
54 |
50 51 52 53 2
|
mulgfval |
|- .X. = ( a e. ZZ , b e. ( Base ` H ) |-> if ( a = 0 , ( 0g ` H ) , if ( 0 < a , ( seq 1 ( ( +g ` H ) , ( NN X. { b } ) ) ` a ) , ( ( invg ` H ) ` ( seq 1 ( ( +g ` H ) , ( NN X. { b } ) ) ` -u a ) ) ) ) ) |
55 |
44 49 54
|
3eqtr4g |
|- ( ph -> .x. = .X. ) |