Step |
Hyp |
Ref |
Expression |
1 |
|
mulgghm2.m |
|- .x. = ( .g ` R ) |
2 |
|
mulgghm2.f |
|- F = ( n e. ZZ |-> ( n .x. .1. ) ) |
3 |
|
mulgrhm.1 |
|- .1. = ( 1r ` R ) |
4 |
|
zringbas |
|- ZZ = ( Base ` ZZring ) |
5 |
|
zring1 |
|- 1 = ( 1r ` ZZring ) |
6 |
|
zringmulr |
|- x. = ( .r ` ZZring ) |
7 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
8 |
|
zringring |
|- ZZring e. Ring |
9 |
8
|
a1i |
|- ( R e. Ring -> ZZring e. Ring ) |
10 |
|
id |
|- ( R e. Ring -> R e. Ring ) |
11 |
|
1z |
|- 1 e. ZZ |
12 |
|
oveq1 |
|- ( n = 1 -> ( n .x. .1. ) = ( 1 .x. .1. ) ) |
13 |
|
ovex |
|- ( 1 .x. .1. ) e. _V |
14 |
12 2 13
|
fvmpt |
|- ( 1 e. ZZ -> ( F ` 1 ) = ( 1 .x. .1. ) ) |
15 |
11 14
|
ax-mp |
|- ( F ` 1 ) = ( 1 .x. .1. ) |
16 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
17 |
16 3
|
ringidcl |
|- ( R e. Ring -> .1. e. ( Base ` R ) ) |
18 |
16 1
|
mulg1 |
|- ( .1. e. ( Base ` R ) -> ( 1 .x. .1. ) = .1. ) |
19 |
17 18
|
syl |
|- ( R e. Ring -> ( 1 .x. .1. ) = .1. ) |
20 |
15 19
|
eqtrid |
|- ( R e. Ring -> ( F ` 1 ) = .1. ) |
21 |
|
ringgrp |
|- ( R e. Ring -> R e. Grp ) |
22 |
21
|
adantr |
|- ( ( R e. Ring /\ ( x e. ZZ /\ y e. ZZ ) ) -> R e. Grp ) |
23 |
|
simprr |
|- ( ( R e. Ring /\ ( x e. ZZ /\ y e. ZZ ) ) -> y e. ZZ ) |
24 |
17
|
adantr |
|- ( ( R e. Ring /\ ( x e. ZZ /\ y e. ZZ ) ) -> .1. e. ( Base ` R ) ) |
25 |
16 1
|
mulgcl |
|- ( ( R e. Grp /\ y e. ZZ /\ .1. e. ( Base ` R ) ) -> ( y .x. .1. ) e. ( Base ` R ) ) |
26 |
22 23 24 25
|
syl3anc |
|- ( ( R e. Ring /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( y .x. .1. ) e. ( Base ` R ) ) |
27 |
16 7 3
|
ringlidm |
|- ( ( R e. Ring /\ ( y .x. .1. ) e. ( Base ` R ) ) -> ( .1. ( .r ` R ) ( y .x. .1. ) ) = ( y .x. .1. ) ) |
28 |
26 27
|
syldan |
|- ( ( R e. Ring /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( .1. ( .r ` R ) ( y .x. .1. ) ) = ( y .x. .1. ) ) |
29 |
28
|
oveq2d |
|- ( ( R e. Ring /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( x .x. ( .1. ( .r ` R ) ( y .x. .1. ) ) ) = ( x .x. ( y .x. .1. ) ) ) |
30 |
|
simpl |
|- ( ( R e. Ring /\ ( x e. ZZ /\ y e. ZZ ) ) -> R e. Ring ) |
31 |
|
simprl |
|- ( ( R e. Ring /\ ( x e. ZZ /\ y e. ZZ ) ) -> x e. ZZ ) |
32 |
16 1 7
|
mulgass2 |
|- ( ( R e. Ring /\ ( x e. ZZ /\ .1. e. ( Base ` R ) /\ ( y .x. .1. ) e. ( Base ` R ) ) ) -> ( ( x .x. .1. ) ( .r ` R ) ( y .x. .1. ) ) = ( x .x. ( .1. ( .r ` R ) ( y .x. .1. ) ) ) ) |
33 |
30 31 24 26 32
|
syl13anc |
|- ( ( R e. Ring /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( x .x. .1. ) ( .r ` R ) ( y .x. .1. ) ) = ( x .x. ( .1. ( .r ` R ) ( y .x. .1. ) ) ) ) |
34 |
16 1
|
mulgass |
|- ( ( R e. Grp /\ ( x e. ZZ /\ y e. ZZ /\ .1. e. ( Base ` R ) ) ) -> ( ( x x. y ) .x. .1. ) = ( x .x. ( y .x. .1. ) ) ) |
35 |
22 31 23 24 34
|
syl13anc |
|- ( ( R e. Ring /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( x x. y ) .x. .1. ) = ( x .x. ( y .x. .1. ) ) ) |
36 |
29 33 35
|
3eqtr4rd |
|- ( ( R e. Ring /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( x x. y ) .x. .1. ) = ( ( x .x. .1. ) ( .r ` R ) ( y .x. .1. ) ) ) |
37 |
|
zmulcl |
|- ( ( x e. ZZ /\ y e. ZZ ) -> ( x x. y ) e. ZZ ) |
38 |
37
|
adantl |
|- ( ( R e. Ring /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( x x. y ) e. ZZ ) |
39 |
|
oveq1 |
|- ( n = ( x x. y ) -> ( n .x. .1. ) = ( ( x x. y ) .x. .1. ) ) |
40 |
|
ovex |
|- ( ( x x. y ) .x. .1. ) e. _V |
41 |
39 2 40
|
fvmpt |
|- ( ( x x. y ) e. ZZ -> ( F ` ( x x. y ) ) = ( ( x x. y ) .x. .1. ) ) |
42 |
38 41
|
syl |
|- ( ( R e. Ring /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( F ` ( x x. y ) ) = ( ( x x. y ) .x. .1. ) ) |
43 |
|
oveq1 |
|- ( n = x -> ( n .x. .1. ) = ( x .x. .1. ) ) |
44 |
|
ovex |
|- ( x .x. .1. ) e. _V |
45 |
43 2 44
|
fvmpt |
|- ( x e. ZZ -> ( F ` x ) = ( x .x. .1. ) ) |
46 |
|
oveq1 |
|- ( n = y -> ( n .x. .1. ) = ( y .x. .1. ) ) |
47 |
|
ovex |
|- ( y .x. .1. ) e. _V |
48 |
46 2 47
|
fvmpt |
|- ( y e. ZZ -> ( F ` y ) = ( y .x. .1. ) ) |
49 |
45 48
|
oveqan12d |
|- ( ( x e. ZZ /\ y e. ZZ ) -> ( ( F ` x ) ( .r ` R ) ( F ` y ) ) = ( ( x .x. .1. ) ( .r ` R ) ( y .x. .1. ) ) ) |
50 |
49
|
adantl |
|- ( ( R e. Ring /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( F ` x ) ( .r ` R ) ( F ` y ) ) = ( ( x .x. .1. ) ( .r ` R ) ( y .x. .1. ) ) ) |
51 |
36 42 50
|
3eqtr4d |
|- ( ( R e. Ring /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( F ` ( x x. y ) ) = ( ( F ` x ) ( .r ` R ) ( F ` y ) ) ) |
52 |
1 2 16
|
mulgghm2 |
|- ( ( R e. Grp /\ .1. e. ( Base ` R ) ) -> F e. ( ZZring GrpHom R ) ) |
53 |
21 17 52
|
syl2anc |
|- ( R e. Ring -> F e. ( ZZring GrpHom R ) ) |
54 |
4 5 3 6 7 9 10 20 51 53
|
isrhm2d |
|- ( R e. Ring -> F e. ( ZZring RingHom R ) ) |