Step |
Hyp |
Ref |
Expression |
1 |
|
mulgghm2.m |
|- .x. = ( .g ` R ) |
2 |
|
mulgghm2.f |
|- F = ( n e. ZZ |-> ( n .x. .1. ) ) |
3 |
|
mulgrhm.1 |
|- .1. = ( 1r ` R ) |
4 |
|
zringbas |
|- ZZ = ( Base ` ZZring ) |
5 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
6 |
4 5
|
rhmf |
|- ( f e. ( ZZring RingHom R ) -> f : ZZ --> ( Base ` R ) ) |
7 |
6
|
adantl |
|- ( ( R e. Ring /\ f e. ( ZZring RingHom R ) ) -> f : ZZ --> ( Base ` R ) ) |
8 |
7
|
feqmptd |
|- ( ( R e. Ring /\ f e. ( ZZring RingHom R ) ) -> f = ( n e. ZZ |-> ( f ` n ) ) ) |
9 |
|
rhmghm |
|- ( f e. ( ZZring RingHom R ) -> f e. ( ZZring GrpHom R ) ) |
10 |
9
|
ad2antlr |
|- ( ( ( R e. Ring /\ f e. ( ZZring RingHom R ) ) /\ n e. ZZ ) -> f e. ( ZZring GrpHom R ) ) |
11 |
|
simpr |
|- ( ( ( R e. Ring /\ f e. ( ZZring RingHom R ) ) /\ n e. ZZ ) -> n e. ZZ ) |
12 |
|
1zzd |
|- ( ( ( R e. Ring /\ f e. ( ZZring RingHom R ) ) /\ n e. ZZ ) -> 1 e. ZZ ) |
13 |
|
eqid |
|- ( .g ` ZZring ) = ( .g ` ZZring ) |
14 |
4 13 1
|
ghmmulg |
|- ( ( f e. ( ZZring GrpHom R ) /\ n e. ZZ /\ 1 e. ZZ ) -> ( f ` ( n ( .g ` ZZring ) 1 ) ) = ( n .x. ( f ` 1 ) ) ) |
15 |
10 11 12 14
|
syl3anc |
|- ( ( ( R e. Ring /\ f e. ( ZZring RingHom R ) ) /\ n e. ZZ ) -> ( f ` ( n ( .g ` ZZring ) 1 ) ) = ( n .x. ( f ` 1 ) ) ) |
16 |
|
ax-1cn |
|- 1 e. CC |
17 |
|
cnfldmulg |
|- ( ( n e. ZZ /\ 1 e. CC ) -> ( n ( .g ` CCfld ) 1 ) = ( n x. 1 ) ) |
18 |
16 17
|
mpan2 |
|- ( n e. ZZ -> ( n ( .g ` CCfld ) 1 ) = ( n x. 1 ) ) |
19 |
|
1z |
|- 1 e. ZZ |
20 |
18
|
adantr |
|- ( ( n e. ZZ /\ 1 e. ZZ ) -> ( n ( .g ` CCfld ) 1 ) = ( n x. 1 ) ) |
21 |
|
zringmulg |
|- ( ( n e. ZZ /\ 1 e. ZZ ) -> ( n ( .g ` ZZring ) 1 ) = ( n x. 1 ) ) |
22 |
20 21
|
eqtr4d |
|- ( ( n e. ZZ /\ 1 e. ZZ ) -> ( n ( .g ` CCfld ) 1 ) = ( n ( .g ` ZZring ) 1 ) ) |
23 |
19 22
|
mpan2 |
|- ( n e. ZZ -> ( n ( .g ` CCfld ) 1 ) = ( n ( .g ` ZZring ) 1 ) ) |
24 |
|
zcn |
|- ( n e. ZZ -> n e. CC ) |
25 |
24
|
mulid1d |
|- ( n e. ZZ -> ( n x. 1 ) = n ) |
26 |
18 23 25
|
3eqtr3d |
|- ( n e. ZZ -> ( n ( .g ` ZZring ) 1 ) = n ) |
27 |
26
|
adantl |
|- ( ( ( R e. Ring /\ f e. ( ZZring RingHom R ) ) /\ n e. ZZ ) -> ( n ( .g ` ZZring ) 1 ) = n ) |
28 |
27
|
fveq2d |
|- ( ( ( R e. Ring /\ f e. ( ZZring RingHom R ) ) /\ n e. ZZ ) -> ( f ` ( n ( .g ` ZZring ) 1 ) ) = ( f ` n ) ) |
29 |
|
zring1 |
|- 1 = ( 1r ` ZZring ) |
30 |
29 3
|
rhm1 |
|- ( f e. ( ZZring RingHom R ) -> ( f ` 1 ) = .1. ) |
31 |
30
|
ad2antlr |
|- ( ( ( R e. Ring /\ f e. ( ZZring RingHom R ) ) /\ n e. ZZ ) -> ( f ` 1 ) = .1. ) |
32 |
31
|
oveq2d |
|- ( ( ( R e. Ring /\ f e. ( ZZring RingHom R ) ) /\ n e. ZZ ) -> ( n .x. ( f ` 1 ) ) = ( n .x. .1. ) ) |
33 |
15 28 32
|
3eqtr3d |
|- ( ( ( R e. Ring /\ f e. ( ZZring RingHom R ) ) /\ n e. ZZ ) -> ( f ` n ) = ( n .x. .1. ) ) |
34 |
33
|
mpteq2dva |
|- ( ( R e. Ring /\ f e. ( ZZring RingHom R ) ) -> ( n e. ZZ |-> ( f ` n ) ) = ( n e. ZZ |-> ( n .x. .1. ) ) ) |
35 |
8 34
|
eqtrd |
|- ( ( R e. Ring /\ f e. ( ZZring RingHom R ) ) -> f = ( n e. ZZ |-> ( n .x. .1. ) ) ) |
36 |
35 2
|
eqtr4di |
|- ( ( R e. Ring /\ f e. ( ZZring RingHom R ) ) -> f = F ) |
37 |
|
velsn |
|- ( f e. { F } <-> f = F ) |
38 |
36 37
|
sylibr |
|- ( ( R e. Ring /\ f e. ( ZZring RingHom R ) ) -> f e. { F } ) |
39 |
38
|
ex |
|- ( R e. Ring -> ( f e. ( ZZring RingHom R ) -> f e. { F } ) ) |
40 |
39
|
ssrdv |
|- ( R e. Ring -> ( ZZring RingHom R ) C_ { F } ) |
41 |
1 2 3
|
mulgrhm |
|- ( R e. Ring -> F e. ( ZZring RingHom R ) ) |
42 |
41
|
snssd |
|- ( R e. Ring -> { F } C_ ( ZZring RingHom R ) ) |
43 |
40 42
|
eqssd |
|- ( R e. Ring -> ( ZZring RingHom R ) = { F } ) |