| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mulgnnsubcl.b |
|- B = ( Base ` G ) |
| 2 |
|
mulgnnsubcl.t |
|- .x. = ( .g ` G ) |
| 3 |
|
mulgnnsubcl.p |
|- .+ = ( +g ` G ) |
| 4 |
|
mulgnnsubcl.g |
|- ( ph -> G e. V ) |
| 5 |
|
mulgnnsubcl.s |
|- ( ph -> S C_ B ) |
| 6 |
|
mulgnnsubcl.c |
|- ( ( ph /\ x e. S /\ y e. S ) -> ( x .+ y ) e. S ) |
| 7 |
|
mulgnn0subcl.z |
|- .0. = ( 0g ` G ) |
| 8 |
|
mulgnn0subcl.c |
|- ( ph -> .0. e. S ) |
| 9 |
|
mulgsubcl.i |
|- I = ( invg ` G ) |
| 10 |
|
mulgsubcl.c |
|- ( ( ph /\ x e. S ) -> ( I ` x ) e. S ) |
| 11 |
1 2 3 4 5 6 7 8
|
mulgnn0subcl |
|- ( ( ph /\ N e. NN0 /\ X e. S ) -> ( N .x. X ) e. S ) |
| 12 |
11
|
3expa |
|- ( ( ( ph /\ N e. NN0 ) /\ X e. S ) -> ( N .x. X ) e. S ) |
| 13 |
12
|
an32s |
|- ( ( ( ph /\ X e. S ) /\ N e. NN0 ) -> ( N .x. X ) e. S ) |
| 14 |
13
|
3adantl2 |
|- ( ( ( ph /\ N e. ZZ /\ X e. S ) /\ N e. NN0 ) -> ( N .x. X ) e. S ) |
| 15 |
|
simp2 |
|- ( ( ph /\ N e. ZZ /\ X e. S ) -> N e. ZZ ) |
| 16 |
15
|
adantr |
|- ( ( ( ph /\ N e. ZZ /\ X e. S ) /\ -u N e. NN ) -> N e. ZZ ) |
| 17 |
16
|
zcnd |
|- ( ( ( ph /\ N e. ZZ /\ X e. S ) /\ -u N e. NN ) -> N e. CC ) |
| 18 |
17
|
negnegd |
|- ( ( ( ph /\ N e. ZZ /\ X e. S ) /\ -u N e. NN ) -> -u -u N = N ) |
| 19 |
18
|
oveq1d |
|- ( ( ( ph /\ N e. ZZ /\ X e. S ) /\ -u N e. NN ) -> ( -u -u N .x. X ) = ( N .x. X ) ) |
| 20 |
|
id |
|- ( -u N e. NN -> -u N e. NN ) |
| 21 |
5
|
3ad2ant1 |
|- ( ( ph /\ N e. ZZ /\ X e. S ) -> S C_ B ) |
| 22 |
|
simp3 |
|- ( ( ph /\ N e. ZZ /\ X e. S ) -> X e. S ) |
| 23 |
21 22
|
sseldd |
|- ( ( ph /\ N e. ZZ /\ X e. S ) -> X e. B ) |
| 24 |
1 2 9
|
mulgnegnn |
|- ( ( -u N e. NN /\ X e. B ) -> ( -u -u N .x. X ) = ( I ` ( -u N .x. X ) ) ) |
| 25 |
20 23 24
|
syl2anr |
|- ( ( ( ph /\ N e. ZZ /\ X e. S ) /\ -u N e. NN ) -> ( -u -u N .x. X ) = ( I ` ( -u N .x. X ) ) ) |
| 26 |
19 25
|
eqtr3d |
|- ( ( ( ph /\ N e. ZZ /\ X e. S ) /\ -u N e. NN ) -> ( N .x. X ) = ( I ` ( -u N .x. X ) ) ) |
| 27 |
|
fveq2 |
|- ( x = ( -u N .x. X ) -> ( I ` x ) = ( I ` ( -u N .x. X ) ) ) |
| 28 |
27
|
eleq1d |
|- ( x = ( -u N .x. X ) -> ( ( I ` x ) e. S <-> ( I ` ( -u N .x. X ) ) e. S ) ) |
| 29 |
10
|
ralrimiva |
|- ( ph -> A. x e. S ( I ` x ) e. S ) |
| 30 |
29
|
3ad2ant1 |
|- ( ( ph /\ N e. ZZ /\ X e. S ) -> A. x e. S ( I ` x ) e. S ) |
| 31 |
30
|
adantr |
|- ( ( ( ph /\ N e. ZZ /\ X e. S ) /\ -u N e. NN ) -> A. x e. S ( I ` x ) e. S ) |
| 32 |
1 2 3 4 5 6
|
mulgnnsubcl |
|- ( ( ph /\ -u N e. NN /\ X e. S ) -> ( -u N .x. X ) e. S ) |
| 33 |
32
|
3expa |
|- ( ( ( ph /\ -u N e. NN ) /\ X e. S ) -> ( -u N .x. X ) e. S ) |
| 34 |
33
|
an32s |
|- ( ( ( ph /\ X e. S ) /\ -u N e. NN ) -> ( -u N .x. X ) e. S ) |
| 35 |
34
|
3adantl2 |
|- ( ( ( ph /\ N e. ZZ /\ X e. S ) /\ -u N e. NN ) -> ( -u N .x. X ) e. S ) |
| 36 |
28 31 35
|
rspcdva |
|- ( ( ( ph /\ N e. ZZ /\ X e. S ) /\ -u N e. NN ) -> ( I ` ( -u N .x. X ) ) e. S ) |
| 37 |
26 36
|
eqeltrd |
|- ( ( ( ph /\ N e. ZZ /\ X e. S ) /\ -u N e. NN ) -> ( N .x. X ) e. S ) |
| 38 |
37
|
adantrl |
|- ( ( ( ph /\ N e. ZZ /\ X e. S ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( N .x. X ) e. S ) |
| 39 |
|
elznn0nn |
|- ( N e. ZZ <-> ( N e. NN0 \/ ( N e. RR /\ -u N e. NN ) ) ) |
| 40 |
15 39
|
sylib |
|- ( ( ph /\ N e. ZZ /\ X e. S ) -> ( N e. NN0 \/ ( N e. RR /\ -u N e. NN ) ) ) |
| 41 |
14 38 40
|
mpjaodan |
|- ( ( ph /\ N e. ZZ /\ X e. S ) -> ( N .x. X ) e. S ) |