Metamath Proof Explorer


Theorem mulgt0i

Description: The product of two positive numbers is positive. (Contributed by NM, 16-May-1999)

Ref Expression
Hypotheses lt.1
|- A e. RR
lt.2
|- B e. RR
Assertion mulgt0i
|- ( ( 0 < A /\ 0 < B ) -> 0 < ( A x. B ) )

Proof

Step Hyp Ref Expression
1 lt.1
 |-  A e. RR
2 lt.2
 |-  B e. RR
3 axmulgt0
 |-  ( ( A e. RR /\ B e. RR ) -> ( ( 0 < A /\ 0 < B ) -> 0 < ( A x. B ) ) )
4 1 2 3 mp2an
 |-  ( ( 0 < A /\ 0 < B ) -> 0 < ( A x. B ) )