Step |
Hyp |
Ref |
Expression |
1 |
|
ltrelsr |
|- |
2 |
1
|
brel |
|- ( 0R ( 0R e. R. /\ A e. R. ) ) |
3 |
2
|
simprd |
|- ( 0R A e. R. ) |
4 |
1
|
brel |
|- ( 0R ( 0R e. R. /\ B e. R. ) ) |
5 |
4
|
simprd |
|- ( 0R B e. R. ) |
6 |
3 5
|
anim12i |
|- ( ( 0R ( A e. R. /\ B e. R. ) ) |
7 |
|
df-nr |
|- R. = ( ( P. X. P. ) /. ~R ) |
8 |
|
breq2 |
|- ( [ <. x , y >. ] ~R = A -> ( 0R . ] ~R <-> 0R |
9 |
8
|
anbi1d |
|- ( [ <. x , y >. ] ~R = A -> ( ( 0R . ] ~R /\ 0R . ] ~R ) <-> ( 0R . ] ~R ) ) ) |
10 |
|
oveq1 |
|- ( [ <. x , y >. ] ~R = A -> ( [ <. x , y >. ] ~R .R [ <. z , w >. ] ~R ) = ( A .R [ <. z , w >. ] ~R ) ) |
11 |
10
|
breq2d |
|- ( [ <. x , y >. ] ~R = A -> ( 0R . ] ~R .R [ <. z , w >. ] ~R ) <-> 0R . ] ~R ) ) ) |
12 |
9 11
|
imbi12d |
|- ( [ <. x , y >. ] ~R = A -> ( ( ( 0R . ] ~R /\ 0R . ] ~R ) -> 0R . ] ~R .R [ <. z , w >. ] ~R ) ) <-> ( ( 0R . ] ~R ) -> 0R . ] ~R ) ) ) ) |
13 |
|
breq2 |
|- ( [ <. z , w >. ] ~R = B -> ( 0R . ] ~R <-> 0R |
14 |
13
|
anbi2d |
|- ( [ <. z , w >. ] ~R = B -> ( ( 0R . ] ~R ) <-> ( 0R |
15 |
|
oveq2 |
|- ( [ <. z , w >. ] ~R = B -> ( A .R [ <. z , w >. ] ~R ) = ( A .R B ) ) |
16 |
15
|
breq2d |
|- ( [ <. z , w >. ] ~R = B -> ( 0R . ] ~R ) <-> 0R |
17 |
14 16
|
imbi12d |
|- ( [ <. z , w >. ] ~R = B -> ( ( ( 0R . ] ~R ) -> 0R . ] ~R ) ) <-> ( ( 0R 0R |
18 |
|
gt0srpr |
|- ( 0R . ] ~R <-> y |
19 |
|
gt0srpr |
|- ( 0R . ] ~R <-> w |
20 |
18 19
|
anbi12i |
|- ( ( 0R . ] ~R /\ 0R . ] ~R ) <-> ( y |
21 |
|
simprr |
|- ( ( ( x e. P. /\ y e. P. ) /\ ( z e. P. /\ w e. P. ) ) -> w e. P. ) |
22 |
|
mulclpr |
|- ( ( x e. P. /\ z e. P. ) -> ( x .P. z ) e. P. ) |
23 |
|
mulclpr |
|- ( ( y e. P. /\ w e. P. ) -> ( y .P. w ) e. P. ) |
24 |
|
addclpr |
|- ( ( ( x .P. z ) e. P. /\ ( y .P. w ) e. P. ) -> ( ( x .P. z ) +P. ( y .P. w ) ) e. P. ) |
25 |
22 23 24
|
syl2an |
|- ( ( ( x e. P. /\ z e. P. ) /\ ( y e. P. /\ w e. P. ) ) -> ( ( x .P. z ) +P. ( y .P. w ) ) e. P. ) |
26 |
25
|
an4s |
|- ( ( ( x e. P. /\ y e. P. ) /\ ( z e. P. /\ w e. P. ) ) -> ( ( x .P. z ) +P. ( y .P. w ) ) e. P. ) |
27 |
|
ltexpri |
|- ( y E. v e. P. ( y +P. v ) = x ) |
28 |
|
ltexpri |
|- ( w E. u e. P. ( w +P. u ) = z ) |
29 |
|
mulclpr |
|- ( ( v e. P. /\ w e. P. ) -> ( v .P. w ) e. P. ) |
30 |
|
oveq12 |
|- ( ( ( y +P. v ) = x /\ ( w +P. u ) = z ) -> ( ( y +P. v ) .P. ( w +P. u ) ) = ( x .P. z ) ) |
31 |
30
|
oveq1d |
|- ( ( ( y +P. v ) = x /\ ( w +P. u ) = z ) -> ( ( ( y +P. v ) .P. ( w +P. u ) ) +P. ( ( y .P. w ) +P. ( v .P. w ) ) ) = ( ( x .P. z ) +P. ( ( y .P. w ) +P. ( v .P. w ) ) ) ) |
32 |
|
distrpr |
|- ( y .P. ( w +P. u ) ) = ( ( y .P. w ) +P. ( y .P. u ) ) |
33 |
|
oveq2 |
|- ( ( w +P. u ) = z -> ( y .P. ( w +P. u ) ) = ( y .P. z ) ) |
34 |
32 33
|
eqtr3id |
|- ( ( w +P. u ) = z -> ( ( y .P. w ) +P. ( y .P. u ) ) = ( y .P. z ) ) |
35 |
34
|
oveq1d |
|- ( ( w +P. u ) = z -> ( ( ( y .P. w ) +P. ( y .P. u ) ) +P. ( ( v .P. w ) +P. ( v .P. u ) ) ) = ( ( y .P. z ) +P. ( ( v .P. w ) +P. ( v .P. u ) ) ) ) |
36 |
|
vex |
|- y e. _V |
37 |
|
vex |
|- v e. _V |
38 |
|
vex |
|- w e. _V |
39 |
|
mulcompr |
|- ( f .P. g ) = ( g .P. f ) |
40 |
|
distrpr |
|- ( f .P. ( g +P. h ) ) = ( ( f .P. g ) +P. ( f .P. h ) ) |
41 |
36 37 38 39 40
|
caovdir |
|- ( ( y +P. v ) .P. w ) = ( ( y .P. w ) +P. ( v .P. w ) ) |
42 |
|
vex |
|- u e. _V |
43 |
36 37 42 39 40
|
caovdir |
|- ( ( y +P. v ) .P. u ) = ( ( y .P. u ) +P. ( v .P. u ) ) |
44 |
41 43
|
oveq12i |
|- ( ( ( y +P. v ) .P. w ) +P. ( ( y +P. v ) .P. u ) ) = ( ( ( y .P. w ) +P. ( v .P. w ) ) +P. ( ( y .P. u ) +P. ( v .P. u ) ) ) |
45 |
|
distrpr |
|- ( ( y +P. v ) .P. ( w +P. u ) ) = ( ( ( y +P. v ) .P. w ) +P. ( ( y +P. v ) .P. u ) ) |
46 |
|
ovex |
|- ( y .P. w ) e. _V |
47 |
|
ovex |
|- ( y .P. u ) e. _V |
48 |
|
ovex |
|- ( v .P. w ) e. _V |
49 |
|
addcompr |
|- ( f +P. g ) = ( g +P. f ) |
50 |
|
addasspr |
|- ( ( f +P. g ) +P. h ) = ( f +P. ( g +P. h ) ) |
51 |
|
ovex |
|- ( v .P. u ) e. _V |
52 |
46 47 48 49 50 51
|
caov4 |
|- ( ( ( y .P. w ) +P. ( y .P. u ) ) +P. ( ( v .P. w ) +P. ( v .P. u ) ) ) = ( ( ( y .P. w ) +P. ( v .P. w ) ) +P. ( ( y .P. u ) +P. ( v .P. u ) ) ) |
53 |
44 45 52
|
3eqtr4i |
|- ( ( y +P. v ) .P. ( w +P. u ) ) = ( ( ( y .P. w ) +P. ( y .P. u ) ) +P. ( ( v .P. w ) +P. ( v .P. u ) ) ) |
54 |
|
ovex |
|- ( y .P. z ) e. _V |
55 |
48 54 51 49 50
|
caov12 |
|- ( ( v .P. w ) +P. ( ( y .P. z ) +P. ( v .P. u ) ) ) = ( ( y .P. z ) +P. ( ( v .P. w ) +P. ( v .P. u ) ) ) |
56 |
35 53 55
|
3eqtr4g |
|- ( ( w +P. u ) = z -> ( ( y +P. v ) .P. ( w +P. u ) ) = ( ( v .P. w ) +P. ( ( y .P. z ) +P. ( v .P. u ) ) ) ) |
57 |
|
oveq1 |
|- ( ( y +P. v ) = x -> ( ( y +P. v ) .P. w ) = ( x .P. w ) ) |
58 |
41 57
|
eqtr3id |
|- ( ( y +P. v ) = x -> ( ( y .P. w ) +P. ( v .P. w ) ) = ( x .P. w ) ) |
59 |
56 58
|
oveqan12rd |
|- ( ( ( y +P. v ) = x /\ ( w +P. u ) = z ) -> ( ( ( y +P. v ) .P. ( w +P. u ) ) +P. ( ( y .P. w ) +P. ( v .P. w ) ) ) = ( ( ( v .P. w ) +P. ( ( y .P. z ) +P. ( v .P. u ) ) ) +P. ( x .P. w ) ) ) |
60 |
31 59
|
eqtr3d |
|- ( ( ( y +P. v ) = x /\ ( w +P. u ) = z ) -> ( ( x .P. z ) +P. ( ( y .P. w ) +P. ( v .P. w ) ) ) = ( ( ( v .P. w ) +P. ( ( y .P. z ) +P. ( v .P. u ) ) ) +P. ( x .P. w ) ) ) |
61 |
|
addasspr |
|- ( ( ( x .P. z ) +P. ( y .P. w ) ) +P. ( v .P. w ) ) = ( ( x .P. z ) +P. ( ( y .P. w ) +P. ( v .P. w ) ) ) |
62 |
|
addcompr |
|- ( ( ( x .P. z ) +P. ( y .P. w ) ) +P. ( v .P. w ) ) = ( ( v .P. w ) +P. ( ( x .P. z ) +P. ( y .P. w ) ) ) |
63 |
61 62
|
eqtr3i |
|- ( ( x .P. z ) +P. ( ( y .P. w ) +P. ( v .P. w ) ) ) = ( ( v .P. w ) +P. ( ( x .P. z ) +P. ( y .P. w ) ) ) |
64 |
|
addasspr |
|- ( ( ( v .P. w ) +P. ( x .P. w ) ) +P. ( ( y .P. z ) +P. ( v .P. u ) ) ) = ( ( v .P. w ) +P. ( ( x .P. w ) +P. ( ( y .P. z ) +P. ( v .P. u ) ) ) ) |
65 |
|
ovex |
|- ( ( y .P. z ) +P. ( v .P. u ) ) e. _V |
66 |
|
ovex |
|- ( x .P. w ) e. _V |
67 |
48 65 66 49 50
|
caov32 |
|- ( ( ( v .P. w ) +P. ( ( y .P. z ) +P. ( v .P. u ) ) ) +P. ( x .P. w ) ) = ( ( ( v .P. w ) +P. ( x .P. w ) ) +P. ( ( y .P. z ) +P. ( v .P. u ) ) ) |
68 |
|
addasspr |
|- ( ( ( x .P. w ) +P. ( y .P. z ) ) +P. ( v .P. u ) ) = ( ( x .P. w ) +P. ( ( y .P. z ) +P. ( v .P. u ) ) ) |
69 |
68
|
oveq2i |
|- ( ( v .P. w ) +P. ( ( ( x .P. w ) +P. ( y .P. z ) ) +P. ( v .P. u ) ) ) = ( ( v .P. w ) +P. ( ( x .P. w ) +P. ( ( y .P. z ) +P. ( v .P. u ) ) ) ) |
70 |
64 67 69
|
3eqtr4i |
|- ( ( ( v .P. w ) +P. ( ( y .P. z ) +P. ( v .P. u ) ) ) +P. ( x .P. w ) ) = ( ( v .P. w ) +P. ( ( ( x .P. w ) +P. ( y .P. z ) ) +P. ( v .P. u ) ) ) |
71 |
60 63 70
|
3eqtr3g |
|- ( ( ( y +P. v ) = x /\ ( w +P. u ) = z ) -> ( ( v .P. w ) +P. ( ( x .P. z ) +P. ( y .P. w ) ) ) = ( ( v .P. w ) +P. ( ( ( x .P. w ) +P. ( y .P. z ) ) +P. ( v .P. u ) ) ) ) |
72 |
|
addcanpr |
|- ( ( ( v .P. w ) e. P. /\ ( ( x .P. z ) +P. ( y .P. w ) ) e. P. ) -> ( ( ( v .P. w ) +P. ( ( x .P. z ) +P. ( y .P. w ) ) ) = ( ( v .P. w ) +P. ( ( ( x .P. w ) +P. ( y .P. z ) ) +P. ( v .P. u ) ) ) -> ( ( x .P. z ) +P. ( y .P. w ) ) = ( ( ( x .P. w ) +P. ( y .P. z ) ) +P. ( v .P. u ) ) ) ) |
73 |
71 72
|
syl5 |
|- ( ( ( v .P. w ) e. P. /\ ( ( x .P. z ) +P. ( y .P. w ) ) e. P. ) -> ( ( ( y +P. v ) = x /\ ( w +P. u ) = z ) -> ( ( x .P. z ) +P. ( y .P. w ) ) = ( ( ( x .P. w ) +P. ( y .P. z ) ) +P. ( v .P. u ) ) ) ) |
74 |
|
eqcom |
|- ( ( ( x .P. z ) +P. ( y .P. w ) ) = ( ( ( x .P. w ) +P. ( y .P. z ) ) +P. ( v .P. u ) ) <-> ( ( ( x .P. w ) +P. ( y .P. z ) ) +P. ( v .P. u ) ) = ( ( x .P. z ) +P. ( y .P. w ) ) ) |
75 |
|
ltaddpr2 |
|- ( ( ( x .P. z ) +P. ( y .P. w ) ) e. P. -> ( ( ( ( x .P. w ) +P. ( y .P. z ) ) +P. ( v .P. u ) ) = ( ( x .P. z ) +P. ( y .P. w ) ) -> ( ( x .P. w ) +P. ( y .P. z ) ) |
76 |
74 75
|
syl5bi |
|- ( ( ( x .P. z ) +P. ( y .P. w ) ) e. P. -> ( ( ( x .P. z ) +P. ( y .P. w ) ) = ( ( ( x .P. w ) +P. ( y .P. z ) ) +P. ( v .P. u ) ) -> ( ( x .P. w ) +P. ( y .P. z ) ) |
77 |
76
|
adantl |
|- ( ( ( v .P. w ) e. P. /\ ( ( x .P. z ) +P. ( y .P. w ) ) e. P. ) -> ( ( ( x .P. z ) +P. ( y .P. w ) ) = ( ( ( x .P. w ) +P. ( y .P. z ) ) +P. ( v .P. u ) ) -> ( ( x .P. w ) +P. ( y .P. z ) ) |
78 |
73 77
|
syld |
|- ( ( ( v .P. w ) e. P. /\ ( ( x .P. z ) +P. ( y .P. w ) ) e. P. ) -> ( ( ( y +P. v ) = x /\ ( w +P. u ) = z ) -> ( ( x .P. w ) +P. ( y .P. z ) ) |
79 |
29 78
|
sylan |
|- ( ( ( v e. P. /\ w e. P. ) /\ ( ( x .P. z ) +P. ( y .P. w ) ) e. P. ) -> ( ( ( y +P. v ) = x /\ ( w +P. u ) = z ) -> ( ( x .P. w ) +P. ( y .P. z ) ) |
80 |
79
|
a1d |
|- ( ( ( v e. P. /\ w e. P. ) /\ ( ( x .P. z ) +P. ( y .P. w ) ) e. P. ) -> ( u e. P. -> ( ( ( y +P. v ) = x /\ ( w +P. u ) = z ) -> ( ( x .P. w ) +P. ( y .P. z ) ) |
81 |
80
|
exp4a |
|- ( ( ( v e. P. /\ w e. P. ) /\ ( ( x .P. z ) +P. ( y .P. w ) ) e. P. ) -> ( u e. P. -> ( ( y +P. v ) = x -> ( ( w +P. u ) = z -> ( ( x .P. w ) +P. ( y .P. z ) ) |
82 |
81
|
com34 |
|- ( ( ( v e. P. /\ w e. P. ) /\ ( ( x .P. z ) +P. ( y .P. w ) ) e. P. ) -> ( u e. P. -> ( ( w +P. u ) = z -> ( ( y +P. v ) = x -> ( ( x .P. w ) +P. ( y .P. z ) ) |
83 |
82
|
rexlimdv |
|- ( ( ( v e. P. /\ w e. P. ) /\ ( ( x .P. z ) +P. ( y .P. w ) ) e. P. ) -> ( E. u e. P. ( w +P. u ) = z -> ( ( y +P. v ) = x -> ( ( x .P. w ) +P. ( y .P. z ) ) |
84 |
83
|
expl |
|- ( v e. P. -> ( ( w e. P. /\ ( ( x .P. z ) +P. ( y .P. w ) ) e. P. ) -> ( E. u e. P. ( w +P. u ) = z -> ( ( y +P. v ) = x -> ( ( x .P. w ) +P. ( y .P. z ) ) |
85 |
84
|
com24 |
|- ( v e. P. -> ( ( y +P. v ) = x -> ( E. u e. P. ( w +P. u ) = z -> ( ( w e. P. /\ ( ( x .P. z ) +P. ( y .P. w ) ) e. P. ) -> ( ( x .P. w ) +P. ( y .P. z ) ) |
86 |
85
|
rexlimiv |
|- ( E. v e. P. ( y +P. v ) = x -> ( E. u e. P. ( w +P. u ) = z -> ( ( w e. P. /\ ( ( x .P. z ) +P. ( y .P. w ) ) e. P. ) -> ( ( x .P. w ) +P. ( y .P. z ) ) |
87 |
27 28 86
|
syl2im |
|- ( y ( w ( ( w e. P. /\ ( ( x .P. z ) +P. ( y .P. w ) ) e. P. ) -> ( ( x .P. w ) +P. ( y .P. z ) ) |
88 |
87
|
imp |
|- ( ( y ( ( w e. P. /\ ( ( x .P. z ) +P. ( y .P. w ) ) e. P. ) -> ( ( x .P. w ) +P. ( y .P. z ) ) |
89 |
88
|
com12 |
|- ( ( w e. P. /\ ( ( x .P. z ) +P. ( y .P. w ) ) e. P. ) -> ( ( y ( ( x .P. w ) +P. ( y .P. z ) ) |
90 |
21 26 89
|
syl2anc |
|- ( ( ( x e. P. /\ y e. P. ) /\ ( z e. P. /\ w e. P. ) ) -> ( ( y ( ( x .P. w ) +P. ( y .P. z ) ) |
91 |
|
mulsrpr |
|- ( ( ( x e. P. /\ y e. P. ) /\ ( z e. P. /\ w e. P. ) ) -> ( [ <. x , y >. ] ~R .R [ <. z , w >. ] ~R ) = [ <. ( ( x .P. z ) +P. ( y .P. w ) ) , ( ( x .P. w ) +P. ( y .P. z ) ) >. ] ~R ) |
92 |
91
|
breq2d |
|- ( ( ( x e. P. /\ y e. P. ) /\ ( z e. P. /\ w e. P. ) ) -> ( 0R . ] ~R .R [ <. z , w >. ] ~R ) <-> 0R . ] ~R ) ) |
93 |
|
gt0srpr |
|- ( 0R . ] ~R <-> ( ( x .P. w ) +P. ( y .P. z ) ) |
94 |
92 93
|
bitrdi |
|- ( ( ( x e. P. /\ y e. P. ) /\ ( z e. P. /\ w e. P. ) ) -> ( 0R . ] ~R .R [ <. z , w >. ] ~R ) <-> ( ( x .P. w ) +P. ( y .P. z ) ) |
95 |
90 94
|
sylibrd |
|- ( ( ( x e. P. /\ y e. P. ) /\ ( z e. P. /\ w e. P. ) ) -> ( ( y 0R . ] ~R .R [ <. z , w >. ] ~R ) ) ) |
96 |
20 95
|
syl5bi |
|- ( ( ( x e. P. /\ y e. P. ) /\ ( z e. P. /\ w e. P. ) ) -> ( ( 0R . ] ~R /\ 0R . ] ~R ) -> 0R . ] ~R .R [ <. z , w >. ] ~R ) ) ) |
97 |
7 12 17 96
|
2ecoptocl |
|- ( ( A e. R. /\ B e. R. ) -> ( ( 0R 0R |
98 |
6 97
|
mpcom |
|- ( ( 0R 0R |