Metamath Proof Explorer


Theorem mulgt0sr

Description: The product of two positive signed reals is positive. (Contributed by NM, 13-May-1996) (New usage is discouraged.)

Ref Expression
Assertion mulgt0sr
|- ( ( 0R  0R 

Proof

Step Hyp Ref Expression
1 ltrelsr
 |-  
2 1 brel
 |-  ( 0R  ( 0R e. R. /\ A e. R. ) )
3 2 simprd
 |-  ( 0R  A e. R. )
4 1 brel
 |-  ( 0R  ( 0R e. R. /\ B e. R. ) )
5 4 simprd
 |-  ( 0R  B e. R. )
6 3 5 anim12i
 |-  ( ( 0R  ( A e. R. /\ B e. R. ) )
7 df-nr
 |-  R. = ( ( P. X. P. ) /. ~R )
8 breq2
 |-  ( [ <. x , y >. ] ~R = A -> ( 0R . ] ~R <-> 0R 
9 8 anbi1d
 |-  ( [ <. x , y >. ] ~R = A -> ( ( 0R . ] ~R /\ 0R . ] ~R ) <-> ( 0R . ] ~R ) ) )
10 oveq1
 |-  ( [ <. x , y >. ] ~R = A -> ( [ <. x , y >. ] ~R .R [ <. z , w >. ] ~R ) = ( A .R [ <. z , w >. ] ~R ) )
11 10 breq2d
 |-  ( [ <. x , y >. ] ~R = A -> ( 0R . ] ~R .R [ <. z , w >. ] ~R ) <-> 0R . ] ~R ) ) )
12 9 11 imbi12d
 |-  ( [ <. x , y >. ] ~R = A -> ( ( ( 0R . ] ~R /\ 0R . ] ~R ) -> 0R . ] ~R .R [ <. z , w >. ] ~R ) ) <-> ( ( 0R . ] ~R ) -> 0R . ] ~R ) ) ) )
13 breq2
 |-  ( [ <. z , w >. ] ~R = B -> ( 0R . ] ~R <-> 0R 
14 13 anbi2d
 |-  ( [ <. z , w >. ] ~R = B -> ( ( 0R . ] ~R ) <-> ( 0R 
15 oveq2
 |-  ( [ <. z , w >. ] ~R = B -> ( A .R [ <. z , w >. ] ~R ) = ( A .R B ) )
16 15 breq2d
 |-  ( [ <. z , w >. ] ~R = B -> ( 0R . ] ~R ) <-> 0R 
17 14 16 imbi12d
 |-  ( [ <. z , w >. ] ~R = B -> ( ( ( 0R . ] ~R ) -> 0R . ] ~R ) ) <-> ( ( 0R  0R 
18 gt0srpr
 |-  ( 0R . ] ~R <-> y 

19 gt0srpr
 |-  ( 0R . ] ~R <-> w 

20 18 19 anbi12i
 |-  ( ( 0R . ] ~R /\ 0R . ] ~R ) <-> ( y 

21 simprr
 |-  ( ( ( x e. P. /\ y e. P. ) /\ ( z e. P. /\ w e. P. ) ) -> w e. P. )
22 mulclpr
 |-  ( ( x e. P. /\ z e. P. ) -> ( x .P. z ) e. P. )
23 mulclpr
 |-  ( ( y e. P. /\ w e. P. ) -> ( y .P. w ) e. P. )
24 addclpr
 |-  ( ( ( x .P. z ) e. P. /\ ( y .P. w ) e. P. ) -> ( ( x .P. z ) +P. ( y .P. w ) ) e. P. )
25 22 23 24 syl2an
 |-  ( ( ( x e. P. /\ z e. P. ) /\ ( y e. P. /\ w e. P. ) ) -> ( ( x .P. z ) +P. ( y .P. w ) ) e. P. )
26 25 an4s
 |-  ( ( ( x e. P. /\ y e. P. ) /\ ( z e. P. /\ w e. P. ) ) -> ( ( x .P. z ) +P. ( y .P. w ) ) e. P. )
27 ltexpri
 |-  ( y 

E. v e. P. ( y +P. v ) = x )

28 ltexpri
 |-  ( w 

E. u e. P. ( w +P. u ) = z )

29 mulclpr
 |-  ( ( v e. P. /\ w e. P. ) -> ( v .P. w ) e. P. )
30 oveq12
 |-  ( ( ( y +P. v ) = x /\ ( w +P. u ) = z ) -> ( ( y +P. v ) .P. ( w +P. u ) ) = ( x .P. z ) )
31 30 oveq1d
 |-  ( ( ( y +P. v ) = x /\ ( w +P. u ) = z ) -> ( ( ( y +P. v ) .P. ( w +P. u ) ) +P. ( ( y .P. w ) +P. ( v .P. w ) ) ) = ( ( x .P. z ) +P. ( ( y .P. w ) +P. ( v .P. w ) ) ) )
32 distrpr
 |-  ( y .P. ( w +P. u ) ) = ( ( y .P. w ) +P. ( y .P. u ) )
33 oveq2
 |-  ( ( w +P. u ) = z -> ( y .P. ( w +P. u ) ) = ( y .P. z ) )
34 32 33 eqtr3id
 |-  ( ( w +P. u ) = z -> ( ( y .P. w ) +P. ( y .P. u ) ) = ( y .P. z ) )
35 34 oveq1d
 |-  ( ( w +P. u ) = z -> ( ( ( y .P. w ) +P. ( y .P. u ) ) +P. ( ( v .P. w ) +P. ( v .P. u ) ) ) = ( ( y .P. z ) +P. ( ( v .P. w ) +P. ( v .P. u ) ) ) )
36 vex
 |-  y e. _V
37 vex
 |-  v e. _V
38 vex
 |-  w e. _V
39 mulcompr
 |-  ( f .P. g ) = ( g .P. f )
40 distrpr
 |-  ( f .P. ( g +P. h ) ) = ( ( f .P. g ) +P. ( f .P. h ) )
41 36 37 38 39 40 caovdir
 |-  ( ( y +P. v ) .P. w ) = ( ( y .P. w ) +P. ( v .P. w ) )
42 vex
 |-  u e. _V
43 36 37 42 39 40 caovdir
 |-  ( ( y +P. v ) .P. u ) = ( ( y .P. u ) +P. ( v .P. u ) )
44 41 43 oveq12i
 |-  ( ( ( y +P. v ) .P. w ) +P. ( ( y +P. v ) .P. u ) ) = ( ( ( y .P. w ) +P. ( v .P. w ) ) +P. ( ( y .P. u ) +P. ( v .P. u ) ) )
45 distrpr
 |-  ( ( y +P. v ) .P. ( w +P. u ) ) = ( ( ( y +P. v ) .P. w ) +P. ( ( y +P. v ) .P. u ) )
46 ovex
 |-  ( y .P. w ) e. _V
47 ovex
 |-  ( y .P. u ) e. _V
48 ovex
 |-  ( v .P. w ) e. _V
49 addcompr
 |-  ( f +P. g ) = ( g +P. f )
50 addasspr
 |-  ( ( f +P. g ) +P. h ) = ( f +P. ( g +P. h ) )
51 ovex
 |-  ( v .P. u ) e. _V
52 46 47 48 49 50 51 caov4
 |-  ( ( ( y .P. w ) +P. ( y .P. u ) ) +P. ( ( v .P. w ) +P. ( v .P. u ) ) ) = ( ( ( y .P. w ) +P. ( v .P. w ) ) +P. ( ( y .P. u ) +P. ( v .P. u ) ) )
53 44 45 52 3eqtr4i
 |-  ( ( y +P. v ) .P. ( w +P. u ) ) = ( ( ( y .P. w ) +P. ( y .P. u ) ) +P. ( ( v .P. w ) +P. ( v .P. u ) ) )
54 ovex
 |-  ( y .P. z ) e. _V
55 48 54 51 49 50 caov12
 |-  ( ( v .P. w ) +P. ( ( y .P. z ) +P. ( v .P. u ) ) ) = ( ( y .P. z ) +P. ( ( v .P. w ) +P. ( v .P. u ) ) )
56 35 53 55 3eqtr4g
 |-  ( ( w +P. u ) = z -> ( ( y +P. v ) .P. ( w +P. u ) ) = ( ( v .P. w ) +P. ( ( y .P. z ) +P. ( v .P. u ) ) ) )
57 oveq1
 |-  ( ( y +P. v ) = x -> ( ( y +P. v ) .P. w ) = ( x .P. w ) )
58 41 57 eqtr3id
 |-  ( ( y +P. v ) = x -> ( ( y .P. w ) +P. ( v .P. w ) ) = ( x .P. w ) )
59 56 58 oveqan12rd
 |-  ( ( ( y +P. v ) = x /\ ( w +P. u ) = z ) -> ( ( ( y +P. v ) .P. ( w +P. u ) ) +P. ( ( y .P. w ) +P. ( v .P. w ) ) ) = ( ( ( v .P. w ) +P. ( ( y .P. z ) +P. ( v .P. u ) ) ) +P. ( x .P. w ) ) )
60 31 59 eqtr3d
 |-  ( ( ( y +P. v ) = x /\ ( w +P. u ) = z ) -> ( ( x .P. z ) +P. ( ( y .P. w ) +P. ( v .P. w ) ) ) = ( ( ( v .P. w ) +P. ( ( y .P. z ) +P. ( v .P. u ) ) ) +P. ( x .P. w ) ) )
61 addasspr
 |-  ( ( ( x .P. z ) +P. ( y .P. w ) ) +P. ( v .P. w ) ) = ( ( x .P. z ) +P. ( ( y .P. w ) +P. ( v .P. w ) ) )
62 addcompr
 |-  ( ( ( x .P. z ) +P. ( y .P. w ) ) +P. ( v .P. w ) ) = ( ( v .P. w ) +P. ( ( x .P. z ) +P. ( y .P. w ) ) )
63 61 62 eqtr3i
 |-  ( ( x .P. z ) +P. ( ( y .P. w ) +P. ( v .P. w ) ) ) = ( ( v .P. w ) +P. ( ( x .P. z ) +P. ( y .P. w ) ) )
64 addasspr
 |-  ( ( ( v .P. w ) +P. ( x .P. w ) ) +P. ( ( y .P. z ) +P. ( v .P. u ) ) ) = ( ( v .P. w ) +P. ( ( x .P. w ) +P. ( ( y .P. z ) +P. ( v .P. u ) ) ) )
65 ovex
 |-  ( ( y .P. z ) +P. ( v .P. u ) ) e. _V
66 ovex
 |-  ( x .P. w ) e. _V
67 48 65 66 49 50 caov32
 |-  ( ( ( v .P. w ) +P. ( ( y .P. z ) +P. ( v .P. u ) ) ) +P. ( x .P. w ) ) = ( ( ( v .P. w ) +P. ( x .P. w ) ) +P. ( ( y .P. z ) +P. ( v .P. u ) ) )
68 addasspr
 |-  ( ( ( x .P. w ) +P. ( y .P. z ) ) +P. ( v .P. u ) ) = ( ( x .P. w ) +P. ( ( y .P. z ) +P. ( v .P. u ) ) )
69 68 oveq2i
 |-  ( ( v .P. w ) +P. ( ( ( x .P. w ) +P. ( y .P. z ) ) +P. ( v .P. u ) ) ) = ( ( v .P. w ) +P. ( ( x .P. w ) +P. ( ( y .P. z ) +P. ( v .P. u ) ) ) )
70 64 67 69 3eqtr4i
 |-  ( ( ( v .P. w ) +P. ( ( y .P. z ) +P. ( v .P. u ) ) ) +P. ( x .P. w ) ) = ( ( v .P. w ) +P. ( ( ( x .P. w ) +P. ( y .P. z ) ) +P. ( v .P. u ) ) )
71 60 63 70 3eqtr3g
 |-  ( ( ( y +P. v ) = x /\ ( w +P. u ) = z ) -> ( ( v .P. w ) +P. ( ( x .P. z ) +P. ( y .P. w ) ) ) = ( ( v .P. w ) +P. ( ( ( x .P. w ) +P. ( y .P. z ) ) +P. ( v .P. u ) ) ) )
72 addcanpr
 |-  ( ( ( v .P. w ) e. P. /\ ( ( x .P. z ) +P. ( y .P. w ) ) e. P. ) -> ( ( ( v .P. w ) +P. ( ( x .P. z ) +P. ( y .P. w ) ) ) = ( ( v .P. w ) +P. ( ( ( x .P. w ) +P. ( y .P. z ) ) +P. ( v .P. u ) ) ) -> ( ( x .P. z ) +P. ( y .P. w ) ) = ( ( ( x .P. w ) +P. ( y .P. z ) ) +P. ( v .P. u ) ) ) )
73 71 72 syl5
 |-  ( ( ( v .P. w ) e. P. /\ ( ( x .P. z ) +P. ( y .P. w ) ) e. P. ) -> ( ( ( y +P. v ) = x /\ ( w +P. u ) = z ) -> ( ( x .P. z ) +P. ( y .P. w ) ) = ( ( ( x .P. w ) +P. ( y .P. z ) ) +P. ( v .P. u ) ) ) )
74 eqcom
 |-  ( ( ( x .P. z ) +P. ( y .P. w ) ) = ( ( ( x .P. w ) +P. ( y .P. z ) ) +P. ( v .P. u ) ) <-> ( ( ( x .P. w ) +P. ( y .P. z ) ) +P. ( v .P. u ) ) = ( ( x .P. z ) +P. ( y .P. w ) ) )
75 ltaddpr2
 |-  ( ( ( x .P. z ) +P. ( y .P. w ) ) e. P. -> ( ( ( ( x .P. w ) +P. ( y .P. z ) ) +P. ( v .P. u ) ) = ( ( x .P. z ) +P. ( y .P. w ) ) -> ( ( x .P. w ) +P. ( y .P. z ) ) 

76 74 75 syl5bi
 |-  ( ( ( x .P. z ) +P. ( y .P. w ) ) e. P. -> ( ( ( x .P. z ) +P. ( y .P. w ) ) = ( ( ( x .P. w ) +P. ( y .P. z ) ) +P. ( v .P. u ) ) -> ( ( x .P. w ) +P. ( y .P. z ) ) 

77 76 adantl
 |-  ( ( ( v .P. w ) e. P. /\ ( ( x .P. z ) +P. ( y .P. w ) ) e. P. ) -> ( ( ( x .P. z ) +P. ( y .P. w ) ) = ( ( ( x .P. w ) +P. ( y .P. z ) ) +P. ( v .P. u ) ) -> ( ( x .P. w ) +P. ( y .P. z ) ) 

78 73 77 syld
 |-  ( ( ( v .P. w ) e. P. /\ ( ( x .P. z ) +P. ( y .P. w ) ) e. P. ) -> ( ( ( y +P. v ) = x /\ ( w +P. u ) = z ) -> ( ( x .P. w ) +P. ( y .P. z ) ) 

79 29 78 sylan
 |-  ( ( ( v e. P. /\ w e. P. ) /\ ( ( x .P. z ) +P. ( y .P. w ) ) e. P. ) -> ( ( ( y +P. v ) = x /\ ( w +P. u ) = z ) -> ( ( x .P. w ) +P. ( y .P. z ) ) 

80 79 a1d
 |-  ( ( ( v e. P. /\ w e. P. ) /\ ( ( x .P. z ) +P. ( y .P. w ) ) e. P. ) -> ( u e. P. -> ( ( ( y +P. v ) = x /\ ( w +P. u ) = z ) -> ( ( x .P. w ) +P. ( y .P. z ) ) 

81 80 exp4a
 |-  ( ( ( v e. P. /\ w e. P. ) /\ ( ( x .P. z ) +P. ( y .P. w ) ) e. P. ) -> ( u e. P. -> ( ( y +P. v ) = x -> ( ( w +P. u ) = z -> ( ( x .P. w ) +P. ( y .P. z ) ) 

82 81 com34
 |-  ( ( ( v e. P. /\ w e. P. ) /\ ( ( x .P. z ) +P. ( y .P. w ) ) e. P. ) -> ( u e. P. -> ( ( w +P. u ) = z -> ( ( y +P. v ) = x -> ( ( x .P. w ) +P. ( y .P. z ) ) 

83 82 rexlimdv
 |-  ( ( ( v e. P. /\ w e. P. ) /\ ( ( x .P. z ) +P. ( y .P. w ) ) e. P. ) -> ( E. u e. P. ( w +P. u ) = z -> ( ( y +P. v ) = x -> ( ( x .P. w ) +P. ( y .P. z ) ) 

84 83 expl
 |-  ( v e. P. -> ( ( w e. P. /\ ( ( x .P. z ) +P. ( y .P. w ) ) e. P. ) -> ( E. u e. P. ( w +P. u ) = z -> ( ( y +P. v ) = x -> ( ( x .P. w ) +P. ( y .P. z ) ) 

85 84 com24
 |-  ( v e. P. -> ( ( y +P. v ) = x -> ( E. u e. P. ( w +P. u ) = z -> ( ( w e. P. /\ ( ( x .P. z ) +P. ( y .P. w ) ) e. P. ) -> ( ( x .P. w ) +P. ( y .P. z ) ) 

86 85 rexlimiv
 |-  ( E. v e. P. ( y +P. v ) = x -> ( E. u e. P. ( w +P. u ) = z -> ( ( w e. P. /\ ( ( x .P. z ) +P. ( y .P. w ) ) e. P. ) -> ( ( x .P. w ) +P. ( y .P. z ) ) 

87 27 28 86 syl2im
 |-  ( y 

( w

( ( w e. P. /\ ( ( x .P. z ) +P. ( y .P. w ) ) e. P. ) -> ( ( x .P. w ) +P. ( y .P. z ) )

88 87 imp
 |-  ( ( y 

( ( w e. P. /\ ( ( x .P. z ) +P. ( y .P. w ) ) e. P. ) -> ( ( x .P. w ) +P. ( y .P. z ) )

89 88 com12
 |-  ( ( w e. P. /\ ( ( x .P. z ) +P. ( y .P. w ) ) e. P. ) -> ( ( y 

( ( x .P. w ) +P. ( y .P. z ) )

90 21 26 89 syl2anc
 |-  ( ( ( x e. P. /\ y e. P. ) /\ ( z e. P. /\ w e. P. ) ) -> ( ( y 

( ( x .P. w ) +P. ( y .P. z ) )

91 mulsrpr
 |-  ( ( ( x e. P. /\ y e. P. ) /\ ( z e. P. /\ w e. P. ) ) -> ( [ <. x , y >. ] ~R .R [ <. z , w >. ] ~R ) = [ <. ( ( x .P. z ) +P. ( y .P. w ) ) , ( ( x .P. w ) +P. ( y .P. z ) ) >. ] ~R )
92 91 breq2d
 |-  ( ( ( x e. P. /\ y e. P. ) /\ ( z e. P. /\ w e. P. ) ) -> ( 0R . ] ~R .R [ <. z , w >. ] ~R ) <-> 0R . ] ~R ) )
93 gt0srpr
 |-  ( 0R . ] ~R <-> ( ( x .P. w ) +P. ( y .P. z ) ) 

94 92 93 bitrdi
 |-  ( ( ( x e. P. /\ y e. P. ) /\ ( z e. P. /\ w e. P. ) ) -> ( 0R . ] ~R .R [ <. z , w >. ] ~R ) <-> ( ( x .P. w ) +P. ( y .P. z ) ) 

95 90 94 sylibrd
 |-  ( ( ( x e. P. /\ y e. P. ) /\ ( z e. P. /\ w e. P. ) ) -> ( ( y 

0R . ] ~R .R [ <. z , w >. ] ~R ) ) )

96 20 95 syl5bi
 |-  ( ( ( x e. P. /\ y e. P. ) /\ ( z e. P. /\ w e. P. ) ) -> ( ( 0R . ] ~R /\ 0R . ] ~R ) -> 0R . ] ~R .R [ <. z , w >. ] ~R ) ) )
97 7 12 17 96 2ecoptocl
 |-  ( ( A e. R. /\ B e. R. ) -> ( ( 0R  0R 
98 6 97 mpcom
 |-  ( ( 0R  0R