Description: The product of two numbers greater than 1 is greater than 1. (Contributed by Mario Carneiro, 28-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ltp1d.1 | |- ( ph -> A e. RR ) | |
| divgt0d.2 | |- ( ph -> B e. RR ) | ||
| mulgt1d.3 | |- ( ph -> 1 < A ) | ||
| mulgt1d.4 | |- ( ph -> 1 < B ) | ||
| Assertion | mulgt1d | |- ( ph -> 1 < ( A x. B ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ltp1d.1 | |- ( ph -> A e. RR ) | |
| 2 | divgt0d.2 | |- ( ph -> B e. RR ) | |
| 3 | mulgt1d.3 | |- ( ph -> 1 < A ) | |
| 4 | mulgt1d.4 | |- ( ph -> 1 < B ) | |
| 5 | mulgt1 | |- ( ( ( A e. RR /\ B e. RR ) /\ ( 1 < A /\ 1 < B ) ) -> 1 < ( A x. B ) ) | |
| 6 | 1 2 3 4 5 | syl22anc | |- ( ph -> 1 < ( A x. B ) ) |