| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mulgval.b |
|- B = ( Base ` G ) |
| 2 |
|
mulgval.p |
|- .+ = ( +g ` G ) |
| 3 |
|
mulgval.o |
|- .0. = ( 0g ` G ) |
| 4 |
|
mulgval.i |
|- I = ( invg ` G ) |
| 5 |
|
mulgval.t |
|- .x. = ( .g ` G ) |
| 6 |
|
mulgval.s |
|- S = seq 1 ( .+ , ( NN X. { X } ) ) |
| 7 |
|
simpl |
|- ( ( n = N /\ x = X ) -> n = N ) |
| 8 |
7
|
eqeq1d |
|- ( ( n = N /\ x = X ) -> ( n = 0 <-> N = 0 ) ) |
| 9 |
7
|
breq2d |
|- ( ( n = N /\ x = X ) -> ( 0 < n <-> 0 < N ) ) |
| 10 |
|
simpr |
|- ( ( n = N /\ x = X ) -> x = X ) |
| 11 |
10
|
sneqd |
|- ( ( n = N /\ x = X ) -> { x } = { X } ) |
| 12 |
11
|
xpeq2d |
|- ( ( n = N /\ x = X ) -> ( NN X. { x } ) = ( NN X. { X } ) ) |
| 13 |
12
|
seqeq3d |
|- ( ( n = N /\ x = X ) -> seq 1 ( .+ , ( NN X. { x } ) ) = seq 1 ( .+ , ( NN X. { X } ) ) ) |
| 14 |
13 6
|
eqtr4di |
|- ( ( n = N /\ x = X ) -> seq 1 ( .+ , ( NN X. { x } ) ) = S ) |
| 15 |
14 7
|
fveq12d |
|- ( ( n = N /\ x = X ) -> ( seq 1 ( .+ , ( NN X. { x } ) ) ` n ) = ( S ` N ) ) |
| 16 |
7
|
negeqd |
|- ( ( n = N /\ x = X ) -> -u n = -u N ) |
| 17 |
14 16
|
fveq12d |
|- ( ( n = N /\ x = X ) -> ( seq 1 ( .+ , ( NN X. { x } ) ) ` -u n ) = ( S ` -u N ) ) |
| 18 |
17
|
fveq2d |
|- ( ( n = N /\ x = X ) -> ( I ` ( seq 1 ( .+ , ( NN X. { x } ) ) ` -u n ) ) = ( I ` ( S ` -u N ) ) ) |
| 19 |
9 15 18
|
ifbieq12d |
|- ( ( n = N /\ x = X ) -> if ( 0 < n , ( seq 1 ( .+ , ( NN X. { x } ) ) ` n ) , ( I ` ( seq 1 ( .+ , ( NN X. { x } ) ) ` -u n ) ) ) = if ( 0 < N , ( S ` N ) , ( I ` ( S ` -u N ) ) ) ) |
| 20 |
8 19
|
ifbieq2d |
|- ( ( n = N /\ x = X ) -> if ( n = 0 , .0. , if ( 0 < n , ( seq 1 ( .+ , ( NN X. { x } ) ) ` n ) , ( I ` ( seq 1 ( .+ , ( NN X. { x } ) ) ` -u n ) ) ) ) = if ( N = 0 , .0. , if ( 0 < N , ( S ` N ) , ( I ` ( S ` -u N ) ) ) ) ) |
| 21 |
1 2 3 4 5
|
mulgfval |
|- .x. = ( n e. ZZ , x e. B |-> if ( n = 0 , .0. , if ( 0 < n , ( seq 1 ( .+ , ( NN X. { x } ) ) ` n ) , ( I ` ( seq 1 ( .+ , ( NN X. { x } ) ) ` -u n ) ) ) ) ) |
| 22 |
3
|
fvexi |
|- .0. e. _V |
| 23 |
|
fvex |
|- ( S ` N ) e. _V |
| 24 |
|
fvex |
|- ( I ` ( S ` -u N ) ) e. _V |
| 25 |
23 24
|
ifex |
|- if ( 0 < N , ( S ` N ) , ( I ` ( S ` -u N ) ) ) e. _V |
| 26 |
22 25
|
ifex |
|- if ( N = 0 , .0. , if ( 0 < N , ( S ` N ) , ( I ` ( S ` -u N ) ) ) ) e. _V |
| 27 |
20 21 26
|
ovmpoa |
|- ( ( N e. ZZ /\ X e. B ) -> ( N .x. X ) = if ( N = 0 , .0. , if ( 0 < N , ( S ` N ) , ( I ` ( S ` -u N ) ) ) ) ) |