Step |
Hyp |
Ref |
Expression |
1 |
|
mulgval.b |
|- B = ( Base ` G ) |
2 |
|
mulgval.p |
|- .+ = ( +g ` G ) |
3 |
|
mulgval.o |
|- .0. = ( 0g ` G ) |
4 |
|
mulgval.i |
|- I = ( invg ` G ) |
5 |
|
mulgval.t |
|- .x. = ( .g ` G ) |
6 |
|
mulgval.s |
|- S = seq 1 ( .+ , ( NN X. { X } ) ) |
7 |
|
simpl |
|- ( ( n = N /\ x = X ) -> n = N ) |
8 |
7
|
eqeq1d |
|- ( ( n = N /\ x = X ) -> ( n = 0 <-> N = 0 ) ) |
9 |
7
|
breq2d |
|- ( ( n = N /\ x = X ) -> ( 0 < n <-> 0 < N ) ) |
10 |
|
simpr |
|- ( ( n = N /\ x = X ) -> x = X ) |
11 |
10
|
sneqd |
|- ( ( n = N /\ x = X ) -> { x } = { X } ) |
12 |
11
|
xpeq2d |
|- ( ( n = N /\ x = X ) -> ( NN X. { x } ) = ( NN X. { X } ) ) |
13 |
12
|
seqeq3d |
|- ( ( n = N /\ x = X ) -> seq 1 ( .+ , ( NN X. { x } ) ) = seq 1 ( .+ , ( NN X. { X } ) ) ) |
14 |
13 6
|
eqtr4di |
|- ( ( n = N /\ x = X ) -> seq 1 ( .+ , ( NN X. { x } ) ) = S ) |
15 |
14 7
|
fveq12d |
|- ( ( n = N /\ x = X ) -> ( seq 1 ( .+ , ( NN X. { x } ) ) ` n ) = ( S ` N ) ) |
16 |
7
|
negeqd |
|- ( ( n = N /\ x = X ) -> -u n = -u N ) |
17 |
14 16
|
fveq12d |
|- ( ( n = N /\ x = X ) -> ( seq 1 ( .+ , ( NN X. { x } ) ) ` -u n ) = ( S ` -u N ) ) |
18 |
17
|
fveq2d |
|- ( ( n = N /\ x = X ) -> ( I ` ( seq 1 ( .+ , ( NN X. { x } ) ) ` -u n ) ) = ( I ` ( S ` -u N ) ) ) |
19 |
9 15 18
|
ifbieq12d |
|- ( ( n = N /\ x = X ) -> if ( 0 < n , ( seq 1 ( .+ , ( NN X. { x } ) ) ` n ) , ( I ` ( seq 1 ( .+ , ( NN X. { x } ) ) ` -u n ) ) ) = if ( 0 < N , ( S ` N ) , ( I ` ( S ` -u N ) ) ) ) |
20 |
8 19
|
ifbieq2d |
|- ( ( n = N /\ x = X ) -> if ( n = 0 , .0. , if ( 0 < n , ( seq 1 ( .+ , ( NN X. { x } ) ) ` n ) , ( I ` ( seq 1 ( .+ , ( NN X. { x } ) ) ` -u n ) ) ) ) = if ( N = 0 , .0. , if ( 0 < N , ( S ` N ) , ( I ` ( S ` -u N ) ) ) ) ) |
21 |
1 2 3 4 5
|
mulgfval |
|- .x. = ( n e. ZZ , x e. B |-> if ( n = 0 , .0. , if ( 0 < n , ( seq 1 ( .+ , ( NN X. { x } ) ) ` n ) , ( I ` ( seq 1 ( .+ , ( NN X. { x } ) ) ` -u n ) ) ) ) ) |
22 |
3
|
fvexi |
|- .0. e. _V |
23 |
|
fvex |
|- ( S ` N ) e. _V |
24 |
|
fvex |
|- ( I ` ( S ` -u N ) ) e. _V |
25 |
23 24
|
ifex |
|- if ( 0 < N , ( S ` N ) , ( I ` ( S ` -u N ) ) ) e. _V |
26 |
22 25
|
ifex |
|- if ( N = 0 , .0. , if ( 0 < N , ( S ` N ) , ( I ` ( S ` -u N ) ) ) ) e. _V |
27 |
20 21 26
|
ovmpoa |
|- ( ( N e. ZZ /\ X e. B ) -> ( N .x. X ) = if ( N = 0 , .0. , if ( 0 < N , ( S ` N ) , ( I ` ( S ` -u N ) ) ) ) ) |