| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mulgnn0z.b |  |-  B = ( Base ` G ) | 
						
							| 2 |  | mulgnn0z.t |  |-  .x. = ( .g ` G ) | 
						
							| 3 |  | mulgnn0z.o |  |-  .0. = ( 0g ` G ) | 
						
							| 4 |  | grpmnd |  |-  ( G e. Grp -> G e. Mnd ) | 
						
							| 5 | 4 | adantr |  |-  ( ( G e. Grp /\ N e. ZZ ) -> G e. Mnd ) | 
						
							| 6 | 1 2 3 | mulgnn0z |  |-  ( ( G e. Mnd /\ N e. NN0 ) -> ( N .x. .0. ) = .0. ) | 
						
							| 7 | 5 6 | sylan |  |-  ( ( ( G e. Grp /\ N e. ZZ ) /\ N e. NN0 ) -> ( N .x. .0. ) = .0. ) | 
						
							| 8 |  | simpll |  |-  ( ( ( G e. Grp /\ N e. ZZ ) /\ -u N e. NN0 ) -> G e. Grp ) | 
						
							| 9 |  | nn0z |  |-  ( -u N e. NN0 -> -u N e. ZZ ) | 
						
							| 10 | 9 | adantl |  |-  ( ( ( G e. Grp /\ N e. ZZ ) /\ -u N e. NN0 ) -> -u N e. ZZ ) | 
						
							| 11 | 1 3 | grpidcl |  |-  ( G e. Grp -> .0. e. B ) | 
						
							| 12 | 11 | ad2antrr |  |-  ( ( ( G e. Grp /\ N e. ZZ ) /\ -u N e. NN0 ) -> .0. e. B ) | 
						
							| 13 |  | eqid |  |-  ( invg ` G ) = ( invg ` G ) | 
						
							| 14 | 1 2 13 | mulgneg |  |-  ( ( G e. Grp /\ -u N e. ZZ /\ .0. e. B ) -> ( -u -u N .x. .0. ) = ( ( invg ` G ) ` ( -u N .x. .0. ) ) ) | 
						
							| 15 | 8 10 12 14 | syl3anc |  |-  ( ( ( G e. Grp /\ N e. ZZ ) /\ -u N e. NN0 ) -> ( -u -u N .x. .0. ) = ( ( invg ` G ) ` ( -u N .x. .0. ) ) ) | 
						
							| 16 |  | zcn |  |-  ( N e. ZZ -> N e. CC ) | 
						
							| 17 | 16 | ad2antlr |  |-  ( ( ( G e. Grp /\ N e. ZZ ) /\ -u N e. NN0 ) -> N e. CC ) | 
						
							| 18 | 17 | negnegd |  |-  ( ( ( G e. Grp /\ N e. ZZ ) /\ -u N e. NN0 ) -> -u -u N = N ) | 
						
							| 19 | 18 | oveq1d |  |-  ( ( ( G e. Grp /\ N e. ZZ ) /\ -u N e. NN0 ) -> ( -u -u N .x. .0. ) = ( N .x. .0. ) ) | 
						
							| 20 | 1 2 3 | mulgnn0z |  |-  ( ( G e. Mnd /\ -u N e. NN0 ) -> ( -u N .x. .0. ) = .0. ) | 
						
							| 21 | 5 20 | sylan |  |-  ( ( ( G e. Grp /\ N e. ZZ ) /\ -u N e. NN0 ) -> ( -u N .x. .0. ) = .0. ) | 
						
							| 22 | 21 | fveq2d |  |-  ( ( ( G e. Grp /\ N e. ZZ ) /\ -u N e. NN0 ) -> ( ( invg ` G ) ` ( -u N .x. .0. ) ) = ( ( invg ` G ) ` .0. ) ) | 
						
							| 23 | 3 13 | grpinvid |  |-  ( G e. Grp -> ( ( invg ` G ) ` .0. ) = .0. ) | 
						
							| 24 | 23 | ad2antrr |  |-  ( ( ( G e. Grp /\ N e. ZZ ) /\ -u N e. NN0 ) -> ( ( invg ` G ) ` .0. ) = .0. ) | 
						
							| 25 | 22 24 | eqtrd |  |-  ( ( ( G e. Grp /\ N e. ZZ ) /\ -u N e. NN0 ) -> ( ( invg ` G ) ` ( -u N .x. .0. ) ) = .0. ) | 
						
							| 26 | 15 19 25 | 3eqtr3d |  |-  ( ( ( G e. Grp /\ N e. ZZ ) /\ -u N e. NN0 ) -> ( N .x. .0. ) = .0. ) | 
						
							| 27 |  | elznn0 |  |-  ( N e. ZZ <-> ( N e. RR /\ ( N e. NN0 \/ -u N e. NN0 ) ) ) | 
						
							| 28 | 27 | simprbi |  |-  ( N e. ZZ -> ( N e. NN0 \/ -u N e. NN0 ) ) | 
						
							| 29 | 28 | adantl |  |-  ( ( G e. Grp /\ N e. ZZ ) -> ( N e. NN0 \/ -u N e. NN0 ) ) | 
						
							| 30 | 7 26 29 | mpjaodan |  |-  ( ( G e. Grp /\ N e. ZZ ) -> ( N .x. .0. ) = .0. ) |