Description: Identity law for multiplication. See mulid1 for commuted version. (Contributed by NM, 8-Oct-1999)
Ref | Expression | ||
---|---|---|---|
Assertion | mulid2 | |- ( A e. CC -> ( 1 x. A ) = A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn | |- 1 e. CC |
|
2 | mulcom | |- ( ( 1 e. CC /\ A e. CC ) -> ( 1 x. A ) = ( A x. 1 ) ) |
|
3 | 1 2 | mpan | |- ( A e. CC -> ( 1 x. A ) = ( A x. 1 ) ) |
4 | mulid1 | |- ( A e. CC -> ( A x. 1 ) = A ) |
|
5 | 3 4 | eqtrd | |- ( A e. CC -> ( 1 x. A ) = A ) |