| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1nq |
|- 1Q e. Q. |
| 2 |
|
mulpqnq |
|- ( ( A e. Q. /\ 1Q e. Q. ) -> ( A .Q 1Q ) = ( /Q ` ( A .pQ 1Q ) ) ) |
| 3 |
1 2
|
mpan2 |
|- ( A e. Q. -> ( A .Q 1Q ) = ( /Q ` ( A .pQ 1Q ) ) ) |
| 4 |
|
relxp |
|- Rel ( N. X. N. ) |
| 5 |
|
elpqn |
|- ( A e. Q. -> A e. ( N. X. N. ) ) |
| 6 |
|
1st2nd |
|- ( ( Rel ( N. X. N. ) /\ A e. ( N. X. N. ) ) -> A = <. ( 1st ` A ) , ( 2nd ` A ) >. ) |
| 7 |
4 5 6
|
sylancr |
|- ( A e. Q. -> A = <. ( 1st ` A ) , ( 2nd ` A ) >. ) |
| 8 |
|
df-1nq |
|- 1Q = <. 1o , 1o >. |
| 9 |
8
|
a1i |
|- ( A e. Q. -> 1Q = <. 1o , 1o >. ) |
| 10 |
7 9
|
oveq12d |
|- ( A e. Q. -> ( A .pQ 1Q ) = ( <. ( 1st ` A ) , ( 2nd ` A ) >. .pQ <. 1o , 1o >. ) ) |
| 11 |
|
xp1st |
|- ( A e. ( N. X. N. ) -> ( 1st ` A ) e. N. ) |
| 12 |
5 11
|
syl |
|- ( A e. Q. -> ( 1st ` A ) e. N. ) |
| 13 |
|
xp2nd |
|- ( A e. ( N. X. N. ) -> ( 2nd ` A ) e. N. ) |
| 14 |
5 13
|
syl |
|- ( A e. Q. -> ( 2nd ` A ) e. N. ) |
| 15 |
|
1pi |
|- 1o e. N. |
| 16 |
15
|
a1i |
|- ( A e. Q. -> 1o e. N. ) |
| 17 |
|
mulpipq |
|- ( ( ( ( 1st ` A ) e. N. /\ ( 2nd ` A ) e. N. ) /\ ( 1o e. N. /\ 1o e. N. ) ) -> ( <. ( 1st ` A ) , ( 2nd ` A ) >. .pQ <. 1o , 1o >. ) = <. ( ( 1st ` A ) .N 1o ) , ( ( 2nd ` A ) .N 1o ) >. ) |
| 18 |
12 14 16 16 17
|
syl22anc |
|- ( A e. Q. -> ( <. ( 1st ` A ) , ( 2nd ` A ) >. .pQ <. 1o , 1o >. ) = <. ( ( 1st ` A ) .N 1o ) , ( ( 2nd ` A ) .N 1o ) >. ) |
| 19 |
|
mulidpi |
|- ( ( 1st ` A ) e. N. -> ( ( 1st ` A ) .N 1o ) = ( 1st ` A ) ) |
| 20 |
11 19
|
syl |
|- ( A e. ( N. X. N. ) -> ( ( 1st ` A ) .N 1o ) = ( 1st ` A ) ) |
| 21 |
|
mulidpi |
|- ( ( 2nd ` A ) e. N. -> ( ( 2nd ` A ) .N 1o ) = ( 2nd ` A ) ) |
| 22 |
13 21
|
syl |
|- ( A e. ( N. X. N. ) -> ( ( 2nd ` A ) .N 1o ) = ( 2nd ` A ) ) |
| 23 |
20 22
|
opeq12d |
|- ( A e. ( N. X. N. ) -> <. ( ( 1st ` A ) .N 1o ) , ( ( 2nd ` A ) .N 1o ) >. = <. ( 1st ` A ) , ( 2nd ` A ) >. ) |
| 24 |
5 23
|
syl |
|- ( A e. Q. -> <. ( ( 1st ` A ) .N 1o ) , ( ( 2nd ` A ) .N 1o ) >. = <. ( 1st ` A ) , ( 2nd ` A ) >. ) |
| 25 |
10 18 24
|
3eqtrd |
|- ( A e. Q. -> ( A .pQ 1Q ) = <. ( 1st ` A ) , ( 2nd ` A ) >. ) |
| 26 |
25 7
|
eqtr4d |
|- ( A e. Q. -> ( A .pQ 1Q ) = A ) |
| 27 |
26
|
fveq2d |
|- ( A e. Q. -> ( /Q ` ( A .pQ 1Q ) ) = ( /Q ` A ) ) |
| 28 |
|
nqerid |
|- ( A e. Q. -> ( /Q ` A ) = A ) |
| 29 |
3 27 28
|
3eqtrd |
|- ( A e. Q. -> ( A .Q 1Q ) = A ) |