Metamath Proof Explorer


Theorem mulidpi

Description: 1 is an identity element for multiplication on positive integers. (Contributed by NM, 4-Mar-1996) (Revised by Mario Carneiro, 17-Nov-2014) (New usage is discouraged.)

Ref Expression
Assertion mulidpi
|- ( A e. N. -> ( A .N 1o ) = A )

Proof

Step Hyp Ref Expression
1 1pi
 |-  1o e. N.
2 mulpiord
 |-  ( ( A e. N. /\ 1o e. N. ) -> ( A .N 1o ) = ( A .o 1o ) )
3 1 2 mpan2
 |-  ( A e. N. -> ( A .N 1o ) = ( A .o 1o ) )
4 pinn
 |-  ( A e. N. -> A e. _om )
5 nnm1
 |-  ( A e. _om -> ( A .o 1o ) = A )
6 4 5 syl
 |-  ( A e. N. -> ( A .o 1o ) = A )
7 3 6 eqtrd
 |-  ( A e. N. -> ( A .N 1o ) = A )