Step |
Hyp |
Ref |
Expression |
1 |
|
mullimcf.f |
|- ( ph -> F : A --> CC ) |
2 |
|
mullimcf.g |
|- ( ph -> G : A --> CC ) |
3 |
|
mullimcf.h |
|- H = ( x e. A |-> ( ( F ` x ) x. ( G ` x ) ) ) |
4 |
|
mullimcf.b |
|- ( ph -> B e. ( F limCC D ) ) |
5 |
|
mullimcf.c |
|- ( ph -> C e. ( G limCC D ) ) |
6 |
|
limccl |
|- ( F limCC D ) C_ CC |
7 |
6 4
|
sselid |
|- ( ph -> B e. CC ) |
8 |
|
limccl |
|- ( G limCC D ) C_ CC |
9 |
8 5
|
sselid |
|- ( ph -> C e. CC ) |
10 |
7 9
|
mulcld |
|- ( ph -> ( B x. C ) e. CC ) |
11 |
|
simpr |
|- ( ( ph /\ w e. RR+ ) -> w e. RR+ ) |
12 |
7
|
adantr |
|- ( ( ph /\ w e. RR+ ) -> B e. CC ) |
13 |
9
|
adantr |
|- ( ( ph /\ w e. RR+ ) -> C e. CC ) |
14 |
|
mulcn2 |
|- ( ( w e. RR+ /\ B e. CC /\ C e. CC ) -> E. a e. RR+ E. b e. RR+ A. c e. CC A. d e. CC ( ( ( abs ` ( c - B ) ) < a /\ ( abs ` ( d - C ) ) < b ) -> ( abs ` ( ( c x. d ) - ( B x. C ) ) ) < w ) ) |
15 |
11 12 13 14
|
syl3anc |
|- ( ( ph /\ w e. RR+ ) -> E. a e. RR+ E. b e. RR+ A. c e. CC A. d e. CC ( ( ( abs ` ( c - B ) ) < a /\ ( abs ` ( d - C ) ) < b ) -> ( abs ` ( ( c x. d ) - ( B x. C ) ) ) < w ) ) |
16 |
1
|
fdmd |
|- ( ph -> dom F = A ) |
17 |
|
limcrcl |
|- ( B e. ( F limCC D ) -> ( F : dom F --> CC /\ dom F C_ CC /\ D e. CC ) ) |
18 |
4 17
|
syl |
|- ( ph -> ( F : dom F --> CC /\ dom F C_ CC /\ D e. CC ) ) |
19 |
18
|
simp2d |
|- ( ph -> dom F C_ CC ) |
20 |
16 19
|
eqsstrrd |
|- ( ph -> A C_ CC ) |
21 |
18
|
simp3d |
|- ( ph -> D e. CC ) |
22 |
1 20 21
|
ellimc3 |
|- ( ph -> ( B e. ( F limCC D ) <-> ( B e. CC /\ A. a e. RR+ E. e e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) ) ) ) |
23 |
4 22
|
mpbid |
|- ( ph -> ( B e. CC /\ A. a e. RR+ E. e e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) ) ) |
24 |
23
|
simprd |
|- ( ph -> A. a e. RR+ E. e e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) ) |
25 |
24
|
r19.21bi |
|- ( ( ph /\ a e. RR+ ) -> E. e e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) ) |
26 |
25
|
adantrr |
|- ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) -> E. e e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) ) |
27 |
2 20 21
|
ellimc3 |
|- ( ph -> ( C e. ( G limCC D ) <-> ( C e. CC /\ A. b e. RR+ E. f e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) ) |
28 |
5 27
|
mpbid |
|- ( ph -> ( C e. CC /\ A. b e. RR+ E. f e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) |
29 |
28
|
simprd |
|- ( ph -> A. b e. RR+ E. f e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) |
30 |
29
|
r19.21bi |
|- ( ( ph /\ b e. RR+ ) -> E. f e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) |
31 |
30
|
adantrl |
|- ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) -> E. f e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) |
32 |
|
reeanv |
|- ( E. e e. RR+ E. f e. RR+ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) <-> ( E. e e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) /\ E. f e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) |
33 |
26 31 32
|
sylanbrc |
|- ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) -> E. e e. RR+ E. f e. RR+ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) |
34 |
|
ifcl |
|- ( ( e e. RR+ /\ f e. RR+ ) -> if ( e <_ f , e , f ) e. RR+ ) |
35 |
34
|
3ad2ant2 |
|- ( ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) /\ ( e e. RR+ /\ f e. RR+ ) /\ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) -> if ( e <_ f , e , f ) e. RR+ ) |
36 |
|
nfv |
|- F/ z ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) |
37 |
|
nfv |
|- F/ z ( e e. RR+ /\ f e. RR+ ) |
38 |
|
nfra1 |
|- F/ z A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) |
39 |
|
nfra1 |
|- F/ z A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) |
40 |
38 39
|
nfan |
|- F/ z ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) |
41 |
36 37 40
|
nf3an |
|- F/ z ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) /\ ( e e. RR+ /\ f e. RR+ ) /\ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) |
42 |
|
simp11l |
|- ( ( ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) /\ ( e e. RR+ /\ f e. RR+ ) /\ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> ph ) |
43 |
|
simp1rl |
|- ( ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) /\ ( e e. RR+ /\ f e. RR+ ) /\ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) -> a e. RR+ ) |
44 |
43
|
3ad2ant1 |
|- ( ( ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) /\ ( e e. RR+ /\ f e. RR+ ) /\ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> a e. RR+ ) |
45 |
42 44
|
jca |
|- ( ( ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) /\ ( e e. RR+ /\ f e. RR+ ) /\ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> ( ph /\ a e. RR+ ) ) |
46 |
|
simp12 |
|- ( ( ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) /\ ( e e. RR+ /\ f e. RR+ ) /\ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> ( e e. RR+ /\ f e. RR+ ) ) |
47 |
|
simp13l |
|- ( ( ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) /\ ( e e. RR+ /\ f e. RR+ ) /\ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) ) |
48 |
45 46 47
|
jca31 |
|- ( ( ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) /\ ( e e. RR+ /\ f e. RR+ ) /\ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) ) ) |
49 |
|
simp1r |
|- ( ( ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) ) |
50 |
|
simp2 |
|- ( ( ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> z e. A ) |
51 |
|
simp3l |
|- ( ( ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> z =/= D ) |
52 |
|
simplll |
|- ( ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) ) -> ph ) |
53 |
52
|
3ad2ant1 |
|- ( ( ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> ph ) |
54 |
|
simp1lr |
|- ( ( ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> ( e e. RR+ /\ f e. RR+ ) ) |
55 |
|
simp3r |
|- ( ( ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) |
56 |
|
simp1l |
|- ( ( ( ph /\ ( e e. RR+ /\ f e. RR+ ) ) /\ z e. A /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) -> ph ) |
57 |
|
simp2 |
|- ( ( ( ph /\ ( e e. RR+ /\ f e. RR+ ) ) /\ z e. A /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) -> z e. A ) |
58 |
20
|
sselda |
|- ( ( ph /\ z e. A ) -> z e. CC ) |
59 |
56 57 58
|
syl2anc |
|- ( ( ( ph /\ ( e e. RR+ /\ f e. RR+ ) ) /\ z e. A /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) -> z e. CC ) |
60 |
56 21
|
syl |
|- ( ( ( ph /\ ( e e. RR+ /\ f e. RR+ ) ) /\ z e. A /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) -> D e. CC ) |
61 |
59 60
|
subcld |
|- ( ( ( ph /\ ( e e. RR+ /\ f e. RR+ ) ) /\ z e. A /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) -> ( z - D ) e. CC ) |
62 |
61
|
abscld |
|- ( ( ( ph /\ ( e e. RR+ /\ f e. RR+ ) ) /\ z e. A /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) -> ( abs ` ( z - D ) ) e. RR ) |
63 |
|
rpre |
|- ( e e. RR+ -> e e. RR ) |
64 |
63
|
ad2antrl |
|- ( ( ph /\ ( e e. RR+ /\ f e. RR+ ) ) -> e e. RR ) |
65 |
64
|
3ad2ant1 |
|- ( ( ( ph /\ ( e e. RR+ /\ f e. RR+ ) ) /\ z e. A /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) -> e e. RR ) |
66 |
|
rpre |
|- ( f e. RR+ -> f e. RR ) |
67 |
66
|
ad2antll |
|- ( ( ph /\ ( e e. RR+ /\ f e. RR+ ) ) -> f e. RR ) |
68 |
67
|
3ad2ant1 |
|- ( ( ( ph /\ ( e e. RR+ /\ f e. RR+ ) ) /\ z e. A /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) -> f e. RR ) |
69 |
65 68
|
ifcld |
|- ( ( ( ph /\ ( e e. RR+ /\ f e. RR+ ) ) /\ z e. A /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) -> if ( e <_ f , e , f ) e. RR ) |
70 |
|
simp3 |
|- ( ( ( ph /\ ( e e. RR+ /\ f e. RR+ ) ) /\ z e. A /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) -> ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) |
71 |
|
min1 |
|- ( ( e e. RR /\ f e. RR ) -> if ( e <_ f , e , f ) <_ e ) |
72 |
65 68 71
|
syl2anc |
|- ( ( ( ph /\ ( e e. RR+ /\ f e. RR+ ) ) /\ z e. A /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) -> if ( e <_ f , e , f ) <_ e ) |
73 |
62 69 65 70 72
|
ltletrd |
|- ( ( ( ph /\ ( e e. RR+ /\ f e. RR+ ) ) /\ z e. A /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) -> ( abs ` ( z - D ) ) < e ) |
74 |
53 54 50 55 73
|
syl211anc |
|- ( ( ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> ( abs ` ( z - D ) ) < e ) |
75 |
51 74
|
jca |
|- ( ( ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> ( z =/= D /\ ( abs ` ( z - D ) ) < e ) ) |
76 |
|
rsp |
|- ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) -> ( z e. A -> ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) ) ) |
77 |
49 50 75 76
|
syl3c |
|- ( ( ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) |
78 |
48 77
|
syld3an1 |
|- ( ( ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) /\ ( e e. RR+ /\ f e. RR+ ) /\ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) |
79 |
|
simp1l |
|- ( ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) /\ ( e e. RR+ /\ f e. RR+ ) /\ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) -> ph ) |
80 |
79 43
|
jca |
|- ( ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) /\ ( e e. RR+ /\ f e. RR+ ) /\ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) -> ( ph /\ a e. RR+ ) ) |
81 |
|
simp2 |
|- ( ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) /\ ( e e. RR+ /\ f e. RR+ ) /\ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) -> ( e e. RR+ /\ f e. RR+ ) ) |
82 |
|
simp3r |
|- ( ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) /\ ( e e. RR+ /\ f e. RR+ ) /\ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) -> A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) |
83 |
80 81 82
|
jca31 |
|- ( ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) /\ ( e e. RR+ /\ f e. RR+ ) /\ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) -> ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) |
84 |
|
simp1r |
|- ( ( ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) |
85 |
|
simp2 |
|- ( ( ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> z e. A ) |
86 |
|
simp3l |
|- ( ( ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> z =/= D ) |
87 |
|
simplll |
|- ( ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) -> ph ) |
88 |
87
|
3ad2ant1 |
|- ( ( ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> ph ) |
89 |
|
simp1lr |
|- ( ( ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> ( e e. RR+ /\ f e. RR+ ) ) |
90 |
|
simp3r |
|- ( ( ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) |
91 |
|
min2 |
|- ( ( e e. RR /\ f e. RR ) -> if ( e <_ f , e , f ) <_ f ) |
92 |
65 68 91
|
syl2anc |
|- ( ( ( ph /\ ( e e. RR+ /\ f e. RR+ ) ) /\ z e. A /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) -> if ( e <_ f , e , f ) <_ f ) |
93 |
62 69 68 70 92
|
ltletrd |
|- ( ( ( ph /\ ( e e. RR+ /\ f e. RR+ ) ) /\ z e. A /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) -> ( abs ` ( z - D ) ) < f ) |
94 |
88 89 85 90 93
|
syl211anc |
|- ( ( ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> ( abs ` ( z - D ) ) < f ) |
95 |
86 94
|
jca |
|- ( ( ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> ( z =/= D /\ ( abs ` ( z - D ) ) < f ) ) |
96 |
|
rsp |
|- ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) -> ( z e. A -> ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) |
97 |
84 85 95 96
|
syl3c |
|- ( ( ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) |
98 |
83 97
|
syl3an1 |
|- ( ( ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) /\ ( e e. RR+ /\ f e. RR+ ) /\ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) |
99 |
78 98
|
jca |
|- ( ( ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) /\ ( e e. RR+ /\ f e. RR+ ) /\ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> ( ( abs ` ( ( F ` z ) - B ) ) < a /\ ( abs ` ( ( G ` z ) - C ) ) < b ) ) |
100 |
99
|
3exp |
|- ( ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) /\ ( e e. RR+ /\ f e. RR+ ) /\ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) -> ( z e. A -> ( ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) -> ( ( abs ` ( ( F ` z ) - B ) ) < a /\ ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) ) |
101 |
41 100
|
ralrimi |
|- ( ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) /\ ( e e. RR+ /\ f e. RR+ ) /\ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) -> A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) -> ( ( abs ` ( ( F ` z ) - B ) ) < a /\ ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) |
102 |
|
brimralrspcev |
|- ( ( if ( e <_ f , e , f ) e. RR+ /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) -> ( ( abs ` ( ( F ` z ) - B ) ) < a /\ ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) -> E. y e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - B ) ) < a /\ ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) |
103 |
35 101 102
|
syl2anc |
|- ( ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) /\ ( e e. RR+ /\ f e. RR+ ) /\ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) -> E. y e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - B ) ) < a /\ ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) |
104 |
103
|
3exp |
|- ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) -> ( ( e e. RR+ /\ f e. RR+ ) -> ( ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) -> E. y e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - B ) ) < a /\ ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) ) ) |
105 |
104
|
rexlimdvv |
|- ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) -> ( E. e e. RR+ E. f e. RR+ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) -> E. y e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - B ) ) < a /\ ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) ) |
106 |
33 105
|
mpd |
|- ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) -> E. y e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - B ) ) < a /\ ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) |
107 |
106
|
adantlr |
|- ( ( ( ph /\ w e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) ) -> E. y e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - B ) ) < a /\ ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) |
108 |
107
|
3adant3 |
|- ( ( ( ph /\ w e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ A. c e. CC A. d e. CC ( ( ( abs ` ( c - B ) ) < a /\ ( abs ` ( d - C ) ) < b ) -> ( abs ` ( ( c x. d ) - ( B x. C ) ) ) < w ) ) -> E. y e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - B ) ) < a /\ ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) |
109 |
|
nfv |
|- F/ z ( ( ( ph /\ w e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ A. c e. CC A. d e. CC ( ( ( abs ` ( c - B ) ) < a /\ ( abs ` ( d - C ) ) < b ) -> ( abs ` ( ( c x. d ) - ( B x. C ) ) ) < w ) ) /\ y e. RR+ ) |
110 |
|
nfra1 |
|- F/ z A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - B ) ) < a /\ ( abs ` ( ( G ` z ) - C ) ) < b ) ) |
111 |
109 110
|
nfan |
|- F/ z ( ( ( ( ph /\ w e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ A. c e. CC A. d e. CC ( ( ( abs ` ( c - B ) ) < a /\ ( abs ` ( d - C ) ) < b ) -> ( abs ` ( ( c x. d ) - ( B x. C ) ) ) < w ) ) /\ y e. RR+ ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - B ) ) < a /\ ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) |
112 |
|
simp1l |
|- ( ( ( ph /\ w e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ A. c e. CC A. d e. CC ( ( ( abs ` ( c - B ) ) < a /\ ( abs ` ( d - C ) ) < b ) -> ( abs ` ( ( c x. d ) - ( B x. C ) ) ) < w ) ) -> ph ) |
113 |
112
|
ad2antrr |
|- ( ( ( ( ( ph /\ w e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ A. c e. CC A. d e. CC ( ( ( abs ` ( c - B ) ) < a /\ ( abs ` ( d - C ) ) < b ) -> ( abs ` ( ( c x. d ) - ( B x. C ) ) ) < w ) ) /\ y e. RR+ ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - B ) ) < a /\ ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) -> ph ) |
114 |
113
|
3ad2ant1 |
|- ( ( ( ( ( ( ph /\ w e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ A. c e. CC A. d e. CC ( ( ( abs ` ( c - B ) ) < a /\ ( abs ` ( d - C ) ) < b ) -> ( abs ` ( ( c x. d ) - ( B x. C ) ) ) < w ) ) /\ y e. RR+ ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - B ) ) < a /\ ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < y ) ) -> ph ) |
115 |
|
simp2 |
|- ( ( ( ( ( ( ph /\ w e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ A. c e. CC A. d e. CC ( ( ( abs ` ( c - B ) ) < a /\ ( abs ` ( d - C ) ) < b ) -> ( abs ` ( ( c x. d ) - ( B x. C ) ) ) < w ) ) /\ y e. RR+ ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - B ) ) < a /\ ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < y ) ) -> z e. A ) |
116 |
|
fveq2 |
|- ( x = z -> ( F ` x ) = ( F ` z ) ) |
117 |
|
fveq2 |
|- ( x = z -> ( G ` x ) = ( G ` z ) ) |
118 |
116 117
|
oveq12d |
|- ( x = z -> ( ( F ` x ) x. ( G ` x ) ) = ( ( F ` z ) x. ( G ` z ) ) ) |
119 |
|
simpr |
|- ( ( ph /\ z e. A ) -> z e. A ) |
120 |
1
|
ffvelrnda |
|- ( ( ph /\ z e. A ) -> ( F ` z ) e. CC ) |
121 |
2
|
ffvelrnda |
|- ( ( ph /\ z e. A ) -> ( G ` z ) e. CC ) |
122 |
120 121
|
mulcld |
|- ( ( ph /\ z e. A ) -> ( ( F ` z ) x. ( G ` z ) ) e. CC ) |
123 |
3 118 119 122
|
fvmptd3 |
|- ( ( ph /\ z e. A ) -> ( H ` z ) = ( ( F ` z ) x. ( G ` z ) ) ) |
124 |
123
|
fvoveq1d |
|- ( ( ph /\ z e. A ) -> ( abs ` ( ( H ` z ) - ( B x. C ) ) ) = ( abs ` ( ( ( F ` z ) x. ( G ` z ) ) - ( B x. C ) ) ) ) |
125 |
114 115 124
|
syl2anc |
|- ( ( ( ( ( ( ph /\ w e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ A. c e. CC A. d e. CC ( ( ( abs ` ( c - B ) ) < a /\ ( abs ` ( d - C ) ) < b ) -> ( abs ` ( ( c x. d ) - ( B x. C ) ) ) < w ) ) /\ y e. RR+ ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - B ) ) < a /\ ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < y ) ) -> ( abs ` ( ( H ` z ) - ( B x. C ) ) ) = ( abs ` ( ( ( F ` z ) x. ( G ` z ) ) - ( B x. C ) ) ) ) |
126 |
120 121
|
jca |
|- ( ( ph /\ z e. A ) -> ( ( F ` z ) e. CC /\ ( G ` z ) e. CC ) ) |
127 |
114 115 126
|
syl2anc |
|- ( ( ( ( ( ( ph /\ w e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ A. c e. CC A. d e. CC ( ( ( abs ` ( c - B ) ) < a /\ ( abs ` ( d - C ) ) < b ) -> ( abs ` ( ( c x. d ) - ( B x. C ) ) ) < w ) ) /\ y e. RR+ ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - B ) ) < a /\ ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < y ) ) -> ( ( F ` z ) e. CC /\ ( G ` z ) e. CC ) ) |
128 |
|
simpll3 |
|- ( ( ( ( ( ph /\ w e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ A. c e. CC A. d e. CC ( ( ( abs ` ( c - B ) ) < a /\ ( abs ` ( d - C ) ) < b ) -> ( abs ` ( ( c x. d ) - ( B x. C ) ) ) < w ) ) /\ y e. RR+ ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - B ) ) < a /\ ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) -> A. c e. CC A. d e. CC ( ( ( abs ` ( c - B ) ) < a /\ ( abs ` ( d - C ) ) < b ) -> ( abs ` ( ( c x. d ) - ( B x. C ) ) ) < w ) ) |
129 |
128
|
3ad2ant1 |
|- ( ( ( ( ( ( ph /\ w e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ A. c e. CC A. d e. CC ( ( ( abs ` ( c - B ) ) < a /\ ( abs ` ( d - C ) ) < b ) -> ( abs ` ( ( c x. d ) - ( B x. C ) ) ) < w ) ) /\ y e. RR+ ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - B ) ) < a /\ ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < y ) ) -> A. c e. CC A. d e. CC ( ( ( abs ` ( c - B ) ) < a /\ ( abs ` ( d - C ) ) < b ) -> ( abs ` ( ( c x. d ) - ( B x. C ) ) ) < w ) ) |
130 |
|
rsp |
|- ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - B ) ) < a /\ ( abs ` ( ( G ` z ) - C ) ) < b ) ) -> ( z e. A -> ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - B ) ) < a /\ ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) ) |
131 |
130
|
3imp |
|- ( ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - B ) ) < a /\ ( abs ` ( ( G ` z ) - C ) ) < b ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < y ) ) -> ( ( abs ` ( ( F ` z ) - B ) ) < a /\ ( abs ` ( ( G ` z ) - C ) ) < b ) ) |
132 |
131
|
3adant1l |
|- ( ( ( ( ( ( ph /\ w e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ A. c e. CC A. d e. CC ( ( ( abs ` ( c - B ) ) < a /\ ( abs ` ( d - C ) ) < b ) -> ( abs ` ( ( c x. d ) - ( B x. C ) ) ) < w ) ) /\ y e. RR+ ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - B ) ) < a /\ ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < y ) ) -> ( ( abs ` ( ( F ` z ) - B ) ) < a /\ ( abs ` ( ( G ` z ) - C ) ) < b ) ) |
133 |
|
fvoveq1 |
|- ( c = ( F ` z ) -> ( abs ` ( c - B ) ) = ( abs ` ( ( F ` z ) - B ) ) ) |
134 |
133
|
breq1d |
|- ( c = ( F ` z ) -> ( ( abs ` ( c - B ) ) < a <-> ( abs ` ( ( F ` z ) - B ) ) < a ) ) |
135 |
134
|
anbi1d |
|- ( c = ( F ` z ) -> ( ( ( abs ` ( c - B ) ) < a /\ ( abs ` ( d - C ) ) < b ) <-> ( ( abs ` ( ( F ` z ) - B ) ) < a /\ ( abs ` ( d - C ) ) < b ) ) ) |
136 |
|
oveq1 |
|- ( c = ( F ` z ) -> ( c x. d ) = ( ( F ` z ) x. d ) ) |
137 |
136
|
fvoveq1d |
|- ( c = ( F ` z ) -> ( abs ` ( ( c x. d ) - ( B x. C ) ) ) = ( abs ` ( ( ( F ` z ) x. d ) - ( B x. C ) ) ) ) |
138 |
137
|
breq1d |
|- ( c = ( F ` z ) -> ( ( abs ` ( ( c x. d ) - ( B x. C ) ) ) < w <-> ( abs ` ( ( ( F ` z ) x. d ) - ( B x. C ) ) ) < w ) ) |
139 |
135 138
|
imbi12d |
|- ( c = ( F ` z ) -> ( ( ( ( abs ` ( c - B ) ) < a /\ ( abs ` ( d - C ) ) < b ) -> ( abs ` ( ( c x. d ) - ( B x. C ) ) ) < w ) <-> ( ( ( abs ` ( ( F ` z ) - B ) ) < a /\ ( abs ` ( d - C ) ) < b ) -> ( abs ` ( ( ( F ` z ) x. d ) - ( B x. C ) ) ) < w ) ) ) |
140 |
|
fvoveq1 |
|- ( d = ( G ` z ) -> ( abs ` ( d - C ) ) = ( abs ` ( ( G ` z ) - C ) ) ) |
141 |
140
|
breq1d |
|- ( d = ( G ` z ) -> ( ( abs ` ( d - C ) ) < b <-> ( abs ` ( ( G ` z ) - C ) ) < b ) ) |
142 |
141
|
anbi2d |
|- ( d = ( G ` z ) -> ( ( ( abs ` ( ( F ` z ) - B ) ) < a /\ ( abs ` ( d - C ) ) < b ) <-> ( ( abs ` ( ( F ` z ) - B ) ) < a /\ ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) |
143 |
|
oveq2 |
|- ( d = ( G ` z ) -> ( ( F ` z ) x. d ) = ( ( F ` z ) x. ( G ` z ) ) ) |
144 |
143
|
fvoveq1d |
|- ( d = ( G ` z ) -> ( abs ` ( ( ( F ` z ) x. d ) - ( B x. C ) ) ) = ( abs ` ( ( ( F ` z ) x. ( G ` z ) ) - ( B x. C ) ) ) ) |
145 |
144
|
breq1d |
|- ( d = ( G ` z ) -> ( ( abs ` ( ( ( F ` z ) x. d ) - ( B x. C ) ) ) < w <-> ( abs ` ( ( ( F ` z ) x. ( G ` z ) ) - ( B x. C ) ) ) < w ) ) |
146 |
142 145
|
imbi12d |
|- ( d = ( G ` z ) -> ( ( ( ( abs ` ( ( F ` z ) - B ) ) < a /\ ( abs ` ( d - C ) ) < b ) -> ( abs ` ( ( ( F ` z ) x. d ) - ( B x. C ) ) ) < w ) <-> ( ( ( abs ` ( ( F ` z ) - B ) ) < a /\ ( abs ` ( ( G ` z ) - C ) ) < b ) -> ( abs ` ( ( ( F ` z ) x. ( G ` z ) ) - ( B x. C ) ) ) < w ) ) ) |
147 |
139 146
|
rspc2v |
|- ( ( ( F ` z ) e. CC /\ ( G ` z ) e. CC ) -> ( A. c e. CC A. d e. CC ( ( ( abs ` ( c - B ) ) < a /\ ( abs ` ( d - C ) ) < b ) -> ( abs ` ( ( c x. d ) - ( B x. C ) ) ) < w ) -> ( ( ( abs ` ( ( F ` z ) - B ) ) < a /\ ( abs ` ( ( G ` z ) - C ) ) < b ) -> ( abs ` ( ( ( F ` z ) x. ( G ` z ) ) - ( B x. C ) ) ) < w ) ) ) |
148 |
127 129 132 147
|
syl3c |
|- ( ( ( ( ( ( ph /\ w e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ A. c e. CC A. d e. CC ( ( ( abs ` ( c - B ) ) < a /\ ( abs ` ( d - C ) ) < b ) -> ( abs ` ( ( c x. d ) - ( B x. C ) ) ) < w ) ) /\ y e. RR+ ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - B ) ) < a /\ ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < y ) ) -> ( abs ` ( ( ( F ` z ) x. ( G ` z ) ) - ( B x. C ) ) ) < w ) |
149 |
125 148
|
eqbrtrd |
|- ( ( ( ( ( ( ph /\ w e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ A. c e. CC A. d e. CC ( ( ( abs ` ( c - B ) ) < a /\ ( abs ` ( d - C ) ) < b ) -> ( abs ` ( ( c x. d ) - ( B x. C ) ) ) < w ) ) /\ y e. RR+ ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - B ) ) < a /\ ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < y ) ) -> ( abs ` ( ( H ` z ) - ( B x. C ) ) ) < w ) |
150 |
149
|
3exp |
|- ( ( ( ( ( ph /\ w e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ A. c e. CC A. d e. CC ( ( ( abs ` ( c - B ) ) < a /\ ( abs ` ( d - C ) ) < b ) -> ( abs ` ( ( c x. d ) - ( B x. C ) ) ) < w ) ) /\ y e. RR+ ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - B ) ) < a /\ ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) -> ( z e. A -> ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( abs ` ( ( H ` z ) - ( B x. C ) ) ) < w ) ) ) |
151 |
111 150
|
ralrimi |
|- ( ( ( ( ( ph /\ w e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ A. c e. CC A. d e. CC ( ( ( abs ` ( c - B ) ) < a /\ ( abs ` ( d - C ) ) < b ) -> ( abs ` ( ( c x. d ) - ( B x. C ) ) ) < w ) ) /\ y e. RR+ ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - B ) ) < a /\ ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) -> A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( abs ` ( ( H ` z ) - ( B x. C ) ) ) < w ) ) |
152 |
151
|
ex |
|- ( ( ( ( ph /\ w e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ A. c e. CC A. d e. CC ( ( ( abs ` ( c - B ) ) < a /\ ( abs ` ( d - C ) ) < b ) -> ( abs ` ( ( c x. d ) - ( B x. C ) ) ) < w ) ) /\ y e. RR+ ) -> ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - B ) ) < a /\ ( abs ` ( ( G ` z ) - C ) ) < b ) ) -> A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( abs ` ( ( H ` z ) - ( B x. C ) ) ) < w ) ) ) |
153 |
152
|
reximdva |
|- ( ( ( ph /\ w e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ A. c e. CC A. d e. CC ( ( ( abs ` ( c - B ) ) < a /\ ( abs ` ( d - C ) ) < b ) -> ( abs ` ( ( c x. d ) - ( B x. C ) ) ) < w ) ) -> ( E. y e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - B ) ) < a /\ ( abs ` ( ( G ` z ) - C ) ) < b ) ) -> E. y e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( abs ` ( ( H ` z ) - ( B x. C ) ) ) < w ) ) ) |
154 |
108 153
|
mpd |
|- ( ( ( ph /\ w e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ A. c e. CC A. d e. CC ( ( ( abs ` ( c - B ) ) < a /\ ( abs ` ( d - C ) ) < b ) -> ( abs ` ( ( c x. d ) - ( B x. C ) ) ) < w ) ) -> E. y e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( abs ` ( ( H ` z ) - ( B x. C ) ) ) < w ) ) |
155 |
154
|
3exp |
|- ( ( ph /\ w e. RR+ ) -> ( ( a e. RR+ /\ b e. RR+ ) -> ( A. c e. CC A. d e. CC ( ( ( abs ` ( c - B ) ) < a /\ ( abs ` ( d - C ) ) < b ) -> ( abs ` ( ( c x. d ) - ( B x. C ) ) ) < w ) -> E. y e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( abs ` ( ( H ` z ) - ( B x. C ) ) ) < w ) ) ) ) |
156 |
155
|
rexlimdvv |
|- ( ( ph /\ w e. RR+ ) -> ( E. a e. RR+ E. b e. RR+ A. c e. CC A. d e. CC ( ( ( abs ` ( c - B ) ) < a /\ ( abs ` ( d - C ) ) < b ) -> ( abs ` ( ( c x. d ) - ( B x. C ) ) ) < w ) -> E. y e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( abs ` ( ( H ` z ) - ( B x. C ) ) ) < w ) ) ) |
157 |
15 156
|
mpd |
|- ( ( ph /\ w e. RR+ ) -> E. y e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( abs ` ( ( H ` z ) - ( B x. C ) ) ) < w ) ) |
158 |
157
|
ralrimiva |
|- ( ph -> A. w e. RR+ E. y e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( abs ` ( ( H ` z ) - ( B x. C ) ) ) < w ) ) |
159 |
1
|
ffvelrnda |
|- ( ( ph /\ x e. A ) -> ( F ` x ) e. CC ) |
160 |
2
|
ffvelrnda |
|- ( ( ph /\ x e. A ) -> ( G ` x ) e. CC ) |
161 |
159 160
|
mulcld |
|- ( ( ph /\ x e. A ) -> ( ( F ` x ) x. ( G ` x ) ) e. CC ) |
162 |
161 3
|
fmptd |
|- ( ph -> H : A --> CC ) |
163 |
162 20 21
|
ellimc3 |
|- ( ph -> ( ( B x. C ) e. ( H limCC D ) <-> ( ( B x. C ) e. CC /\ A. w e. RR+ E. y e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( abs ` ( ( H ` z ) - ( B x. C ) ) ) < w ) ) ) ) |
164 |
10 158 163
|
mpbir2and |
|- ( ph -> ( B x. C ) e. ( H limCC D ) ) |