| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mullimcf.f |
|- ( ph -> F : A --> CC ) |
| 2 |
|
mullimcf.g |
|- ( ph -> G : A --> CC ) |
| 3 |
|
mullimcf.h |
|- H = ( x e. A |-> ( ( F ` x ) x. ( G ` x ) ) ) |
| 4 |
|
mullimcf.b |
|- ( ph -> B e. ( F limCC D ) ) |
| 5 |
|
mullimcf.c |
|- ( ph -> C e. ( G limCC D ) ) |
| 6 |
|
limccl |
|- ( F limCC D ) C_ CC |
| 7 |
6 4
|
sselid |
|- ( ph -> B e. CC ) |
| 8 |
|
limccl |
|- ( G limCC D ) C_ CC |
| 9 |
8 5
|
sselid |
|- ( ph -> C e. CC ) |
| 10 |
7 9
|
mulcld |
|- ( ph -> ( B x. C ) e. CC ) |
| 11 |
|
simpr |
|- ( ( ph /\ w e. RR+ ) -> w e. RR+ ) |
| 12 |
7
|
adantr |
|- ( ( ph /\ w e. RR+ ) -> B e. CC ) |
| 13 |
9
|
adantr |
|- ( ( ph /\ w e. RR+ ) -> C e. CC ) |
| 14 |
|
mulcn2 |
|- ( ( w e. RR+ /\ B e. CC /\ C e. CC ) -> E. a e. RR+ E. b e. RR+ A. c e. CC A. d e. CC ( ( ( abs ` ( c - B ) ) < a /\ ( abs ` ( d - C ) ) < b ) -> ( abs ` ( ( c x. d ) - ( B x. C ) ) ) < w ) ) |
| 15 |
11 12 13 14
|
syl3anc |
|- ( ( ph /\ w e. RR+ ) -> E. a e. RR+ E. b e. RR+ A. c e. CC A. d e. CC ( ( ( abs ` ( c - B ) ) < a /\ ( abs ` ( d - C ) ) < b ) -> ( abs ` ( ( c x. d ) - ( B x. C ) ) ) < w ) ) |
| 16 |
1
|
fdmd |
|- ( ph -> dom F = A ) |
| 17 |
|
limcrcl |
|- ( B e. ( F limCC D ) -> ( F : dom F --> CC /\ dom F C_ CC /\ D e. CC ) ) |
| 18 |
4 17
|
syl |
|- ( ph -> ( F : dom F --> CC /\ dom F C_ CC /\ D e. CC ) ) |
| 19 |
18
|
simp2d |
|- ( ph -> dom F C_ CC ) |
| 20 |
16 19
|
eqsstrrd |
|- ( ph -> A C_ CC ) |
| 21 |
18
|
simp3d |
|- ( ph -> D e. CC ) |
| 22 |
1 20 21
|
ellimc3 |
|- ( ph -> ( B e. ( F limCC D ) <-> ( B e. CC /\ A. a e. RR+ E. e e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) ) ) ) |
| 23 |
4 22
|
mpbid |
|- ( ph -> ( B e. CC /\ A. a e. RR+ E. e e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) ) ) |
| 24 |
23
|
simprd |
|- ( ph -> A. a e. RR+ E. e e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) ) |
| 25 |
24
|
r19.21bi |
|- ( ( ph /\ a e. RR+ ) -> E. e e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) ) |
| 26 |
25
|
adantrr |
|- ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) -> E. e e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) ) |
| 27 |
2 20 21
|
ellimc3 |
|- ( ph -> ( C e. ( G limCC D ) <-> ( C e. CC /\ A. b e. RR+ E. f e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) ) |
| 28 |
5 27
|
mpbid |
|- ( ph -> ( C e. CC /\ A. b e. RR+ E. f e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) |
| 29 |
28
|
simprd |
|- ( ph -> A. b e. RR+ E. f e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) |
| 30 |
29
|
r19.21bi |
|- ( ( ph /\ b e. RR+ ) -> E. f e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) |
| 31 |
30
|
adantrl |
|- ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) -> E. f e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) |
| 32 |
|
reeanv |
|- ( E. e e. RR+ E. f e. RR+ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) <-> ( E. e e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) /\ E. f e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) |
| 33 |
26 31 32
|
sylanbrc |
|- ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) -> E. e e. RR+ E. f e. RR+ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) |
| 34 |
|
ifcl |
|- ( ( e e. RR+ /\ f e. RR+ ) -> if ( e <_ f , e , f ) e. RR+ ) |
| 35 |
34
|
3ad2ant2 |
|- ( ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) /\ ( e e. RR+ /\ f e. RR+ ) /\ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) -> if ( e <_ f , e , f ) e. RR+ ) |
| 36 |
|
nfv |
|- F/ z ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) |
| 37 |
|
nfv |
|- F/ z ( e e. RR+ /\ f e. RR+ ) |
| 38 |
|
nfra1 |
|- F/ z A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) |
| 39 |
|
nfra1 |
|- F/ z A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) |
| 40 |
38 39
|
nfan |
|- F/ z ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) |
| 41 |
36 37 40
|
nf3an |
|- F/ z ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) /\ ( e e. RR+ /\ f e. RR+ ) /\ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) |
| 42 |
|
simp11l |
|- ( ( ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) /\ ( e e. RR+ /\ f e. RR+ ) /\ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> ph ) |
| 43 |
|
simp1rl |
|- ( ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) /\ ( e e. RR+ /\ f e. RR+ ) /\ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) -> a e. RR+ ) |
| 44 |
43
|
3ad2ant1 |
|- ( ( ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) /\ ( e e. RR+ /\ f e. RR+ ) /\ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> a e. RR+ ) |
| 45 |
42 44
|
jca |
|- ( ( ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) /\ ( e e. RR+ /\ f e. RR+ ) /\ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> ( ph /\ a e. RR+ ) ) |
| 46 |
|
simp12 |
|- ( ( ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) /\ ( e e. RR+ /\ f e. RR+ ) /\ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> ( e e. RR+ /\ f e. RR+ ) ) |
| 47 |
|
simp13l |
|- ( ( ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) /\ ( e e. RR+ /\ f e. RR+ ) /\ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) ) |
| 48 |
45 46 47
|
jca31 |
|- ( ( ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) /\ ( e e. RR+ /\ f e. RR+ ) /\ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) ) ) |
| 49 |
|
simp1r |
|- ( ( ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) ) |
| 50 |
|
simp2 |
|- ( ( ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> z e. A ) |
| 51 |
|
simp3l |
|- ( ( ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> z =/= D ) |
| 52 |
|
simplll |
|- ( ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) ) -> ph ) |
| 53 |
52
|
3ad2ant1 |
|- ( ( ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> ph ) |
| 54 |
|
simp1lr |
|- ( ( ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> ( e e. RR+ /\ f e. RR+ ) ) |
| 55 |
|
simp3r |
|- ( ( ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) |
| 56 |
|
simp1l |
|- ( ( ( ph /\ ( e e. RR+ /\ f e. RR+ ) ) /\ z e. A /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) -> ph ) |
| 57 |
|
simp2 |
|- ( ( ( ph /\ ( e e. RR+ /\ f e. RR+ ) ) /\ z e. A /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) -> z e. A ) |
| 58 |
20
|
sselda |
|- ( ( ph /\ z e. A ) -> z e. CC ) |
| 59 |
56 57 58
|
syl2anc |
|- ( ( ( ph /\ ( e e. RR+ /\ f e. RR+ ) ) /\ z e. A /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) -> z e. CC ) |
| 60 |
56 21
|
syl |
|- ( ( ( ph /\ ( e e. RR+ /\ f e. RR+ ) ) /\ z e. A /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) -> D e. CC ) |
| 61 |
59 60
|
subcld |
|- ( ( ( ph /\ ( e e. RR+ /\ f e. RR+ ) ) /\ z e. A /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) -> ( z - D ) e. CC ) |
| 62 |
61
|
abscld |
|- ( ( ( ph /\ ( e e. RR+ /\ f e. RR+ ) ) /\ z e. A /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) -> ( abs ` ( z - D ) ) e. RR ) |
| 63 |
|
rpre |
|- ( e e. RR+ -> e e. RR ) |
| 64 |
63
|
ad2antrl |
|- ( ( ph /\ ( e e. RR+ /\ f e. RR+ ) ) -> e e. RR ) |
| 65 |
64
|
3ad2ant1 |
|- ( ( ( ph /\ ( e e. RR+ /\ f e. RR+ ) ) /\ z e. A /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) -> e e. RR ) |
| 66 |
|
rpre |
|- ( f e. RR+ -> f e. RR ) |
| 67 |
66
|
ad2antll |
|- ( ( ph /\ ( e e. RR+ /\ f e. RR+ ) ) -> f e. RR ) |
| 68 |
67
|
3ad2ant1 |
|- ( ( ( ph /\ ( e e. RR+ /\ f e. RR+ ) ) /\ z e. A /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) -> f e. RR ) |
| 69 |
65 68
|
ifcld |
|- ( ( ( ph /\ ( e e. RR+ /\ f e. RR+ ) ) /\ z e. A /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) -> if ( e <_ f , e , f ) e. RR ) |
| 70 |
|
simp3 |
|- ( ( ( ph /\ ( e e. RR+ /\ f e. RR+ ) ) /\ z e. A /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) -> ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) |
| 71 |
|
min1 |
|- ( ( e e. RR /\ f e. RR ) -> if ( e <_ f , e , f ) <_ e ) |
| 72 |
65 68 71
|
syl2anc |
|- ( ( ( ph /\ ( e e. RR+ /\ f e. RR+ ) ) /\ z e. A /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) -> if ( e <_ f , e , f ) <_ e ) |
| 73 |
62 69 65 70 72
|
ltletrd |
|- ( ( ( ph /\ ( e e. RR+ /\ f e. RR+ ) ) /\ z e. A /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) -> ( abs ` ( z - D ) ) < e ) |
| 74 |
53 54 50 55 73
|
syl211anc |
|- ( ( ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> ( abs ` ( z - D ) ) < e ) |
| 75 |
51 74
|
jca |
|- ( ( ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> ( z =/= D /\ ( abs ` ( z - D ) ) < e ) ) |
| 76 |
|
rsp |
|- ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) -> ( z e. A -> ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) ) ) |
| 77 |
49 50 75 76
|
syl3c |
|- ( ( ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) |
| 78 |
48 77
|
syld3an1 |
|- ( ( ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) /\ ( e e. RR+ /\ f e. RR+ ) /\ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) |
| 79 |
|
simp1l |
|- ( ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) /\ ( e e. RR+ /\ f e. RR+ ) /\ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) -> ph ) |
| 80 |
79 43
|
jca |
|- ( ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) /\ ( e e. RR+ /\ f e. RR+ ) /\ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) -> ( ph /\ a e. RR+ ) ) |
| 81 |
|
simp2 |
|- ( ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) /\ ( e e. RR+ /\ f e. RR+ ) /\ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) -> ( e e. RR+ /\ f e. RR+ ) ) |
| 82 |
|
simp3r |
|- ( ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) /\ ( e e. RR+ /\ f e. RR+ ) /\ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) -> A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) |
| 83 |
80 81 82
|
jca31 |
|- ( ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) /\ ( e e. RR+ /\ f e. RR+ ) /\ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) -> ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) |
| 84 |
|
simp1r |
|- ( ( ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) |
| 85 |
|
simp2 |
|- ( ( ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> z e. A ) |
| 86 |
|
simp3l |
|- ( ( ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> z =/= D ) |
| 87 |
|
simplll |
|- ( ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) -> ph ) |
| 88 |
87
|
3ad2ant1 |
|- ( ( ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> ph ) |
| 89 |
|
simp1lr |
|- ( ( ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> ( e e. RR+ /\ f e. RR+ ) ) |
| 90 |
|
simp3r |
|- ( ( ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) |
| 91 |
|
min2 |
|- ( ( e e. RR /\ f e. RR ) -> if ( e <_ f , e , f ) <_ f ) |
| 92 |
65 68 91
|
syl2anc |
|- ( ( ( ph /\ ( e e. RR+ /\ f e. RR+ ) ) /\ z e. A /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) -> if ( e <_ f , e , f ) <_ f ) |
| 93 |
62 69 68 70 92
|
ltletrd |
|- ( ( ( ph /\ ( e e. RR+ /\ f e. RR+ ) ) /\ z e. A /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) -> ( abs ` ( z - D ) ) < f ) |
| 94 |
88 89 85 90 93
|
syl211anc |
|- ( ( ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> ( abs ` ( z - D ) ) < f ) |
| 95 |
86 94
|
jca |
|- ( ( ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> ( z =/= D /\ ( abs ` ( z - D ) ) < f ) ) |
| 96 |
|
rsp |
|- ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) -> ( z e. A -> ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) |
| 97 |
84 85 95 96
|
syl3c |
|- ( ( ( ( ( ph /\ a e. RR+ ) /\ ( e e. RR+ /\ f e. RR+ ) ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) |
| 98 |
83 97
|
syl3an1 |
|- ( ( ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) /\ ( e e. RR+ /\ f e. RR+ ) /\ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) |
| 99 |
78 98
|
jca |
|- ( ( ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) /\ ( e e. RR+ /\ f e. RR+ ) /\ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) ) -> ( ( abs ` ( ( F ` z ) - B ) ) < a /\ ( abs ` ( ( G ` z ) - C ) ) < b ) ) |
| 100 |
99
|
3exp |
|- ( ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) /\ ( e e. RR+ /\ f e. RR+ ) /\ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) -> ( z e. A -> ( ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) -> ( ( abs ` ( ( F ` z ) - B ) ) < a /\ ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) ) |
| 101 |
41 100
|
ralrimi |
|- ( ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) /\ ( e e. RR+ /\ f e. RR+ ) /\ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) -> A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) -> ( ( abs ` ( ( F ` z ) - B ) ) < a /\ ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) |
| 102 |
|
brimralrspcev |
|- ( ( if ( e <_ f , e , f ) e. RR+ /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < if ( e <_ f , e , f ) ) -> ( ( abs ` ( ( F ` z ) - B ) ) < a /\ ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) -> E. y e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - B ) ) < a /\ ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) |
| 103 |
35 101 102
|
syl2anc |
|- ( ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) /\ ( e e. RR+ /\ f e. RR+ ) /\ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) -> E. y e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - B ) ) < a /\ ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) |
| 104 |
103
|
3exp |
|- ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) -> ( ( e e. RR+ /\ f e. RR+ ) -> ( ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) -> E. y e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - B ) ) < a /\ ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) ) ) |
| 105 |
104
|
rexlimdvv |
|- ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) -> ( E. e e. RR+ E. f e. RR+ ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < e ) -> ( abs ` ( ( F ` z ) - B ) ) < a ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < f ) -> ( abs ` ( ( G ` z ) - C ) ) < b ) ) -> E. y e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - B ) ) < a /\ ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) ) |
| 106 |
33 105
|
mpd |
|- ( ( ph /\ ( a e. RR+ /\ b e. RR+ ) ) -> E. y e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - B ) ) < a /\ ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) |
| 107 |
106
|
adantlr |
|- ( ( ( ph /\ w e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) ) -> E. y e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - B ) ) < a /\ ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) |
| 108 |
107
|
3adant3 |
|- ( ( ( ph /\ w e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ A. c e. CC A. d e. CC ( ( ( abs ` ( c - B ) ) < a /\ ( abs ` ( d - C ) ) < b ) -> ( abs ` ( ( c x. d ) - ( B x. C ) ) ) < w ) ) -> E. y e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - B ) ) < a /\ ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) |
| 109 |
|
nfv |
|- F/ z ( ( ( ph /\ w e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ A. c e. CC A. d e. CC ( ( ( abs ` ( c - B ) ) < a /\ ( abs ` ( d - C ) ) < b ) -> ( abs ` ( ( c x. d ) - ( B x. C ) ) ) < w ) ) /\ y e. RR+ ) |
| 110 |
|
nfra1 |
|- F/ z A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - B ) ) < a /\ ( abs ` ( ( G ` z ) - C ) ) < b ) ) |
| 111 |
109 110
|
nfan |
|- F/ z ( ( ( ( ph /\ w e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ A. c e. CC A. d e. CC ( ( ( abs ` ( c - B ) ) < a /\ ( abs ` ( d - C ) ) < b ) -> ( abs ` ( ( c x. d ) - ( B x. C ) ) ) < w ) ) /\ y e. RR+ ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - B ) ) < a /\ ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) |
| 112 |
|
simp1l |
|- ( ( ( ph /\ w e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ A. c e. CC A. d e. CC ( ( ( abs ` ( c - B ) ) < a /\ ( abs ` ( d - C ) ) < b ) -> ( abs ` ( ( c x. d ) - ( B x. C ) ) ) < w ) ) -> ph ) |
| 113 |
112
|
ad2antrr |
|- ( ( ( ( ( ph /\ w e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ A. c e. CC A. d e. CC ( ( ( abs ` ( c - B ) ) < a /\ ( abs ` ( d - C ) ) < b ) -> ( abs ` ( ( c x. d ) - ( B x. C ) ) ) < w ) ) /\ y e. RR+ ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - B ) ) < a /\ ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) -> ph ) |
| 114 |
113
|
3ad2ant1 |
|- ( ( ( ( ( ( ph /\ w e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ A. c e. CC A. d e. CC ( ( ( abs ` ( c - B ) ) < a /\ ( abs ` ( d - C ) ) < b ) -> ( abs ` ( ( c x. d ) - ( B x. C ) ) ) < w ) ) /\ y e. RR+ ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - B ) ) < a /\ ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < y ) ) -> ph ) |
| 115 |
|
simp2 |
|- ( ( ( ( ( ( ph /\ w e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ A. c e. CC A. d e. CC ( ( ( abs ` ( c - B ) ) < a /\ ( abs ` ( d - C ) ) < b ) -> ( abs ` ( ( c x. d ) - ( B x. C ) ) ) < w ) ) /\ y e. RR+ ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - B ) ) < a /\ ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < y ) ) -> z e. A ) |
| 116 |
|
fveq2 |
|- ( x = z -> ( F ` x ) = ( F ` z ) ) |
| 117 |
|
fveq2 |
|- ( x = z -> ( G ` x ) = ( G ` z ) ) |
| 118 |
116 117
|
oveq12d |
|- ( x = z -> ( ( F ` x ) x. ( G ` x ) ) = ( ( F ` z ) x. ( G ` z ) ) ) |
| 119 |
|
simpr |
|- ( ( ph /\ z e. A ) -> z e. A ) |
| 120 |
1
|
ffvelcdmda |
|- ( ( ph /\ z e. A ) -> ( F ` z ) e. CC ) |
| 121 |
2
|
ffvelcdmda |
|- ( ( ph /\ z e. A ) -> ( G ` z ) e. CC ) |
| 122 |
120 121
|
mulcld |
|- ( ( ph /\ z e. A ) -> ( ( F ` z ) x. ( G ` z ) ) e. CC ) |
| 123 |
3 118 119 122
|
fvmptd3 |
|- ( ( ph /\ z e. A ) -> ( H ` z ) = ( ( F ` z ) x. ( G ` z ) ) ) |
| 124 |
123
|
fvoveq1d |
|- ( ( ph /\ z e. A ) -> ( abs ` ( ( H ` z ) - ( B x. C ) ) ) = ( abs ` ( ( ( F ` z ) x. ( G ` z ) ) - ( B x. C ) ) ) ) |
| 125 |
114 115 124
|
syl2anc |
|- ( ( ( ( ( ( ph /\ w e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ A. c e. CC A. d e. CC ( ( ( abs ` ( c - B ) ) < a /\ ( abs ` ( d - C ) ) < b ) -> ( abs ` ( ( c x. d ) - ( B x. C ) ) ) < w ) ) /\ y e. RR+ ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - B ) ) < a /\ ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < y ) ) -> ( abs ` ( ( H ` z ) - ( B x. C ) ) ) = ( abs ` ( ( ( F ` z ) x. ( G ` z ) ) - ( B x. C ) ) ) ) |
| 126 |
120 121
|
jca |
|- ( ( ph /\ z e. A ) -> ( ( F ` z ) e. CC /\ ( G ` z ) e. CC ) ) |
| 127 |
114 115 126
|
syl2anc |
|- ( ( ( ( ( ( ph /\ w e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ A. c e. CC A. d e. CC ( ( ( abs ` ( c - B ) ) < a /\ ( abs ` ( d - C ) ) < b ) -> ( abs ` ( ( c x. d ) - ( B x. C ) ) ) < w ) ) /\ y e. RR+ ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - B ) ) < a /\ ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < y ) ) -> ( ( F ` z ) e. CC /\ ( G ` z ) e. CC ) ) |
| 128 |
|
simpll3 |
|- ( ( ( ( ( ph /\ w e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ A. c e. CC A. d e. CC ( ( ( abs ` ( c - B ) ) < a /\ ( abs ` ( d - C ) ) < b ) -> ( abs ` ( ( c x. d ) - ( B x. C ) ) ) < w ) ) /\ y e. RR+ ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - B ) ) < a /\ ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) -> A. c e. CC A. d e. CC ( ( ( abs ` ( c - B ) ) < a /\ ( abs ` ( d - C ) ) < b ) -> ( abs ` ( ( c x. d ) - ( B x. C ) ) ) < w ) ) |
| 129 |
128
|
3ad2ant1 |
|- ( ( ( ( ( ( ph /\ w e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ A. c e. CC A. d e. CC ( ( ( abs ` ( c - B ) ) < a /\ ( abs ` ( d - C ) ) < b ) -> ( abs ` ( ( c x. d ) - ( B x. C ) ) ) < w ) ) /\ y e. RR+ ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - B ) ) < a /\ ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < y ) ) -> A. c e. CC A. d e. CC ( ( ( abs ` ( c - B ) ) < a /\ ( abs ` ( d - C ) ) < b ) -> ( abs ` ( ( c x. d ) - ( B x. C ) ) ) < w ) ) |
| 130 |
|
rsp |
|- ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - B ) ) < a /\ ( abs ` ( ( G ` z ) - C ) ) < b ) ) -> ( z e. A -> ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - B ) ) < a /\ ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) ) |
| 131 |
130
|
3imp |
|- ( ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - B ) ) < a /\ ( abs ` ( ( G ` z ) - C ) ) < b ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < y ) ) -> ( ( abs ` ( ( F ` z ) - B ) ) < a /\ ( abs ` ( ( G ` z ) - C ) ) < b ) ) |
| 132 |
131
|
3adant1l |
|- ( ( ( ( ( ( ph /\ w e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ A. c e. CC A. d e. CC ( ( ( abs ` ( c - B ) ) < a /\ ( abs ` ( d - C ) ) < b ) -> ( abs ` ( ( c x. d ) - ( B x. C ) ) ) < w ) ) /\ y e. RR+ ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - B ) ) < a /\ ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < y ) ) -> ( ( abs ` ( ( F ` z ) - B ) ) < a /\ ( abs ` ( ( G ` z ) - C ) ) < b ) ) |
| 133 |
|
fvoveq1 |
|- ( c = ( F ` z ) -> ( abs ` ( c - B ) ) = ( abs ` ( ( F ` z ) - B ) ) ) |
| 134 |
133
|
breq1d |
|- ( c = ( F ` z ) -> ( ( abs ` ( c - B ) ) < a <-> ( abs ` ( ( F ` z ) - B ) ) < a ) ) |
| 135 |
134
|
anbi1d |
|- ( c = ( F ` z ) -> ( ( ( abs ` ( c - B ) ) < a /\ ( abs ` ( d - C ) ) < b ) <-> ( ( abs ` ( ( F ` z ) - B ) ) < a /\ ( abs ` ( d - C ) ) < b ) ) ) |
| 136 |
|
oveq1 |
|- ( c = ( F ` z ) -> ( c x. d ) = ( ( F ` z ) x. d ) ) |
| 137 |
136
|
fvoveq1d |
|- ( c = ( F ` z ) -> ( abs ` ( ( c x. d ) - ( B x. C ) ) ) = ( abs ` ( ( ( F ` z ) x. d ) - ( B x. C ) ) ) ) |
| 138 |
137
|
breq1d |
|- ( c = ( F ` z ) -> ( ( abs ` ( ( c x. d ) - ( B x. C ) ) ) < w <-> ( abs ` ( ( ( F ` z ) x. d ) - ( B x. C ) ) ) < w ) ) |
| 139 |
135 138
|
imbi12d |
|- ( c = ( F ` z ) -> ( ( ( ( abs ` ( c - B ) ) < a /\ ( abs ` ( d - C ) ) < b ) -> ( abs ` ( ( c x. d ) - ( B x. C ) ) ) < w ) <-> ( ( ( abs ` ( ( F ` z ) - B ) ) < a /\ ( abs ` ( d - C ) ) < b ) -> ( abs ` ( ( ( F ` z ) x. d ) - ( B x. C ) ) ) < w ) ) ) |
| 140 |
|
fvoveq1 |
|- ( d = ( G ` z ) -> ( abs ` ( d - C ) ) = ( abs ` ( ( G ` z ) - C ) ) ) |
| 141 |
140
|
breq1d |
|- ( d = ( G ` z ) -> ( ( abs ` ( d - C ) ) < b <-> ( abs ` ( ( G ` z ) - C ) ) < b ) ) |
| 142 |
141
|
anbi2d |
|- ( d = ( G ` z ) -> ( ( ( abs ` ( ( F ` z ) - B ) ) < a /\ ( abs ` ( d - C ) ) < b ) <-> ( ( abs ` ( ( F ` z ) - B ) ) < a /\ ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) |
| 143 |
|
oveq2 |
|- ( d = ( G ` z ) -> ( ( F ` z ) x. d ) = ( ( F ` z ) x. ( G ` z ) ) ) |
| 144 |
143
|
fvoveq1d |
|- ( d = ( G ` z ) -> ( abs ` ( ( ( F ` z ) x. d ) - ( B x. C ) ) ) = ( abs ` ( ( ( F ` z ) x. ( G ` z ) ) - ( B x. C ) ) ) ) |
| 145 |
144
|
breq1d |
|- ( d = ( G ` z ) -> ( ( abs ` ( ( ( F ` z ) x. d ) - ( B x. C ) ) ) < w <-> ( abs ` ( ( ( F ` z ) x. ( G ` z ) ) - ( B x. C ) ) ) < w ) ) |
| 146 |
142 145
|
imbi12d |
|- ( d = ( G ` z ) -> ( ( ( ( abs ` ( ( F ` z ) - B ) ) < a /\ ( abs ` ( d - C ) ) < b ) -> ( abs ` ( ( ( F ` z ) x. d ) - ( B x. C ) ) ) < w ) <-> ( ( ( abs ` ( ( F ` z ) - B ) ) < a /\ ( abs ` ( ( G ` z ) - C ) ) < b ) -> ( abs ` ( ( ( F ` z ) x. ( G ` z ) ) - ( B x. C ) ) ) < w ) ) ) |
| 147 |
139 146
|
rspc2v |
|- ( ( ( F ` z ) e. CC /\ ( G ` z ) e. CC ) -> ( A. c e. CC A. d e. CC ( ( ( abs ` ( c - B ) ) < a /\ ( abs ` ( d - C ) ) < b ) -> ( abs ` ( ( c x. d ) - ( B x. C ) ) ) < w ) -> ( ( ( abs ` ( ( F ` z ) - B ) ) < a /\ ( abs ` ( ( G ` z ) - C ) ) < b ) -> ( abs ` ( ( ( F ` z ) x. ( G ` z ) ) - ( B x. C ) ) ) < w ) ) ) |
| 148 |
127 129 132 147
|
syl3c |
|- ( ( ( ( ( ( ph /\ w e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ A. c e. CC A. d e. CC ( ( ( abs ` ( c - B ) ) < a /\ ( abs ` ( d - C ) ) < b ) -> ( abs ` ( ( c x. d ) - ( B x. C ) ) ) < w ) ) /\ y e. RR+ ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - B ) ) < a /\ ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < y ) ) -> ( abs ` ( ( ( F ` z ) x. ( G ` z ) ) - ( B x. C ) ) ) < w ) |
| 149 |
125 148
|
eqbrtrd |
|- ( ( ( ( ( ( ph /\ w e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ A. c e. CC A. d e. CC ( ( ( abs ` ( c - B ) ) < a /\ ( abs ` ( d - C ) ) < b ) -> ( abs ` ( ( c x. d ) - ( B x. C ) ) ) < w ) ) /\ y e. RR+ ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - B ) ) < a /\ ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) /\ z e. A /\ ( z =/= D /\ ( abs ` ( z - D ) ) < y ) ) -> ( abs ` ( ( H ` z ) - ( B x. C ) ) ) < w ) |
| 150 |
149
|
3exp |
|- ( ( ( ( ( ph /\ w e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ A. c e. CC A. d e. CC ( ( ( abs ` ( c - B ) ) < a /\ ( abs ` ( d - C ) ) < b ) -> ( abs ` ( ( c x. d ) - ( B x. C ) ) ) < w ) ) /\ y e. RR+ ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - B ) ) < a /\ ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) -> ( z e. A -> ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( abs ` ( ( H ` z ) - ( B x. C ) ) ) < w ) ) ) |
| 151 |
111 150
|
ralrimi |
|- ( ( ( ( ( ph /\ w e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ A. c e. CC A. d e. CC ( ( ( abs ` ( c - B ) ) < a /\ ( abs ` ( d - C ) ) < b ) -> ( abs ` ( ( c x. d ) - ( B x. C ) ) ) < w ) ) /\ y e. RR+ ) /\ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - B ) ) < a /\ ( abs ` ( ( G ` z ) - C ) ) < b ) ) ) -> A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( abs ` ( ( H ` z ) - ( B x. C ) ) ) < w ) ) |
| 152 |
151
|
ex |
|- ( ( ( ( ph /\ w e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ A. c e. CC A. d e. CC ( ( ( abs ` ( c - B ) ) < a /\ ( abs ` ( d - C ) ) < b ) -> ( abs ` ( ( c x. d ) - ( B x. C ) ) ) < w ) ) /\ y e. RR+ ) -> ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - B ) ) < a /\ ( abs ` ( ( G ` z ) - C ) ) < b ) ) -> A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( abs ` ( ( H ` z ) - ( B x. C ) ) ) < w ) ) ) |
| 153 |
152
|
reximdva |
|- ( ( ( ph /\ w e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ A. c e. CC A. d e. CC ( ( ( abs ` ( c - B ) ) < a /\ ( abs ` ( d - C ) ) < b ) -> ( abs ` ( ( c x. d ) - ( B x. C ) ) ) < w ) ) -> ( E. y e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( ( abs ` ( ( F ` z ) - B ) ) < a /\ ( abs ` ( ( G ` z ) - C ) ) < b ) ) -> E. y e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( abs ` ( ( H ` z ) - ( B x. C ) ) ) < w ) ) ) |
| 154 |
108 153
|
mpd |
|- ( ( ( ph /\ w e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ A. c e. CC A. d e. CC ( ( ( abs ` ( c - B ) ) < a /\ ( abs ` ( d - C ) ) < b ) -> ( abs ` ( ( c x. d ) - ( B x. C ) ) ) < w ) ) -> E. y e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( abs ` ( ( H ` z ) - ( B x. C ) ) ) < w ) ) |
| 155 |
154
|
3exp |
|- ( ( ph /\ w e. RR+ ) -> ( ( a e. RR+ /\ b e. RR+ ) -> ( A. c e. CC A. d e. CC ( ( ( abs ` ( c - B ) ) < a /\ ( abs ` ( d - C ) ) < b ) -> ( abs ` ( ( c x. d ) - ( B x. C ) ) ) < w ) -> E. y e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( abs ` ( ( H ` z ) - ( B x. C ) ) ) < w ) ) ) ) |
| 156 |
155
|
rexlimdvv |
|- ( ( ph /\ w e. RR+ ) -> ( E. a e. RR+ E. b e. RR+ A. c e. CC A. d e. CC ( ( ( abs ` ( c - B ) ) < a /\ ( abs ` ( d - C ) ) < b ) -> ( abs ` ( ( c x. d ) - ( B x. C ) ) ) < w ) -> E. y e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( abs ` ( ( H ` z ) - ( B x. C ) ) ) < w ) ) ) |
| 157 |
15 156
|
mpd |
|- ( ( ph /\ w e. RR+ ) -> E. y e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( abs ` ( ( H ` z ) - ( B x. C ) ) ) < w ) ) |
| 158 |
157
|
ralrimiva |
|- ( ph -> A. w e. RR+ E. y e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( abs ` ( ( H ` z ) - ( B x. C ) ) ) < w ) ) |
| 159 |
1
|
ffvelcdmda |
|- ( ( ph /\ x e. A ) -> ( F ` x ) e. CC ) |
| 160 |
2
|
ffvelcdmda |
|- ( ( ph /\ x e. A ) -> ( G ` x ) e. CC ) |
| 161 |
159 160
|
mulcld |
|- ( ( ph /\ x e. A ) -> ( ( F ` x ) x. ( G ` x ) ) e. CC ) |
| 162 |
161 3
|
fmptd |
|- ( ph -> H : A --> CC ) |
| 163 |
162 20 21
|
ellimc3 |
|- ( ph -> ( ( B x. C ) e. ( H limCC D ) <-> ( ( B x. C ) e. CC /\ A. w e. RR+ E. y e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < y ) -> ( abs ` ( ( H ` z ) - ( B x. C ) ) ) < w ) ) ) ) |
| 164 |
10 158 163
|
mpbir2and |
|- ( ph -> ( B x. C ) e. ( H limCC D ) ) |