| Step |
Hyp |
Ref |
Expression |
| 1 |
|
renegcl |
|- ( A e. RR -> -u A e. RR ) |
| 2 |
1
|
adantr |
|- ( ( A e. RR /\ A < 0 ) -> -u A e. RR ) |
| 3 |
|
lt0neg1 |
|- ( A e. RR -> ( A < 0 <-> 0 < -u A ) ) |
| 4 |
3
|
biimpa |
|- ( ( A e. RR /\ A < 0 ) -> 0 < -u A ) |
| 5 |
2 4
|
jca |
|- ( ( A e. RR /\ A < 0 ) -> ( -u A e. RR /\ 0 < -u A ) ) |
| 6 |
|
renegcl |
|- ( B e. RR -> -u B e. RR ) |
| 7 |
6
|
adantr |
|- ( ( B e. RR /\ B < 0 ) -> -u B e. RR ) |
| 8 |
|
lt0neg1 |
|- ( B e. RR -> ( B < 0 <-> 0 < -u B ) ) |
| 9 |
8
|
biimpa |
|- ( ( B e. RR /\ B < 0 ) -> 0 < -u B ) |
| 10 |
7 9
|
jca |
|- ( ( B e. RR /\ B < 0 ) -> ( -u B e. RR /\ 0 < -u B ) ) |
| 11 |
|
mulgt0 |
|- ( ( ( -u A e. RR /\ 0 < -u A ) /\ ( -u B e. RR /\ 0 < -u B ) ) -> 0 < ( -u A x. -u B ) ) |
| 12 |
5 10 11
|
syl2an |
|- ( ( ( A e. RR /\ A < 0 ) /\ ( B e. RR /\ B < 0 ) ) -> 0 < ( -u A x. -u B ) ) |
| 13 |
|
recn |
|- ( A e. RR -> A e. CC ) |
| 14 |
|
recn |
|- ( B e. RR -> B e. CC ) |
| 15 |
|
mul2neg |
|- ( ( A e. CC /\ B e. CC ) -> ( -u A x. -u B ) = ( A x. B ) ) |
| 16 |
13 14 15
|
syl2an |
|- ( ( A e. RR /\ B e. RR ) -> ( -u A x. -u B ) = ( A x. B ) ) |
| 17 |
16
|
ad2ant2r |
|- ( ( ( A e. RR /\ A < 0 ) /\ ( B e. RR /\ B < 0 ) ) -> ( -u A x. -u B ) = ( A x. B ) ) |
| 18 |
12 17
|
breqtrd |
|- ( ( ( A e. RR /\ A < 0 ) /\ ( B e. RR /\ B < 0 ) ) -> 0 < ( A x. B ) ) |