Step |
Hyp |
Ref |
Expression |
1 |
|
renegcl |
|- ( A e. RR -> -u A e. RR ) |
2 |
1
|
adantr |
|- ( ( A e. RR /\ A < 0 ) -> -u A e. RR ) |
3 |
|
lt0neg1 |
|- ( A e. RR -> ( A < 0 <-> 0 < -u A ) ) |
4 |
3
|
biimpa |
|- ( ( A e. RR /\ A < 0 ) -> 0 < -u A ) |
5 |
2 4
|
jca |
|- ( ( A e. RR /\ A < 0 ) -> ( -u A e. RR /\ 0 < -u A ) ) |
6 |
|
renegcl |
|- ( B e. RR -> -u B e. RR ) |
7 |
6
|
adantr |
|- ( ( B e. RR /\ B < 0 ) -> -u B e. RR ) |
8 |
|
lt0neg1 |
|- ( B e. RR -> ( B < 0 <-> 0 < -u B ) ) |
9 |
8
|
biimpa |
|- ( ( B e. RR /\ B < 0 ) -> 0 < -u B ) |
10 |
7 9
|
jca |
|- ( ( B e. RR /\ B < 0 ) -> ( -u B e. RR /\ 0 < -u B ) ) |
11 |
|
mulgt0 |
|- ( ( ( -u A e. RR /\ 0 < -u A ) /\ ( -u B e. RR /\ 0 < -u B ) ) -> 0 < ( -u A x. -u B ) ) |
12 |
5 10 11
|
syl2an |
|- ( ( ( A e. RR /\ A < 0 ) /\ ( B e. RR /\ B < 0 ) ) -> 0 < ( -u A x. -u B ) ) |
13 |
|
recn |
|- ( A e. RR -> A e. CC ) |
14 |
|
recn |
|- ( B e. RR -> B e. CC ) |
15 |
|
mul2neg |
|- ( ( A e. CC /\ B e. CC ) -> ( -u A x. -u B ) = ( A x. B ) ) |
16 |
13 14 15
|
syl2an |
|- ( ( A e. RR /\ B e. RR ) -> ( -u A x. -u B ) = ( A x. B ) ) |
17 |
16
|
ad2ant2r |
|- ( ( ( A e. RR /\ A < 0 ) /\ ( B e. RR /\ B < 0 ) ) -> ( -u A x. -u B ) = ( A x. B ) ) |
18 |
12 17
|
breqtrd |
|- ( ( ( A e. RR /\ A < 0 ) /\ ( B e. RR /\ B < 0 ) ) -> 0 < ( A x. B ) ) |