Step |
Hyp |
Ref |
Expression |
1 |
|
renegcl |
|- ( A e. RR -> -u A e. RR ) |
2 |
1
|
ad2antrr |
|- ( ( ( A e. RR /\ A < 0 ) /\ ( B e. RR /\ 0 < B ) ) -> -u A e. RR ) |
3 |
|
lt0neg1 |
|- ( A e. RR -> ( A < 0 <-> 0 < -u A ) ) |
4 |
3
|
biimpa |
|- ( ( A e. RR /\ A < 0 ) -> 0 < -u A ) |
5 |
4
|
adantr |
|- ( ( ( A e. RR /\ A < 0 ) /\ ( B e. RR /\ 0 < B ) ) -> 0 < -u A ) |
6 |
|
simpr |
|- ( ( ( A e. RR /\ A < 0 ) /\ ( B e. RR /\ 0 < B ) ) -> ( B e. RR /\ 0 < B ) ) |
7 |
|
mulgt0 |
|- ( ( ( -u A e. RR /\ 0 < -u A ) /\ ( B e. RR /\ 0 < B ) ) -> 0 < ( -u A x. B ) ) |
8 |
2 5 6 7
|
syl21anc |
|- ( ( ( A e. RR /\ A < 0 ) /\ ( B e. RR /\ 0 < B ) ) -> 0 < ( -u A x. B ) ) |
9 |
|
recn |
|- ( A e. RR -> A e. CC ) |
10 |
9
|
ad2antrr |
|- ( ( ( A e. RR /\ A < 0 ) /\ ( B e. RR /\ 0 < B ) ) -> A e. CC ) |
11 |
|
recn |
|- ( B e. RR -> B e. CC ) |
12 |
11
|
ad2antrl |
|- ( ( ( A e. RR /\ A < 0 ) /\ ( B e. RR /\ 0 < B ) ) -> B e. CC ) |
13 |
10 12
|
mulneg1d |
|- ( ( ( A e. RR /\ A < 0 ) /\ ( B e. RR /\ 0 < B ) ) -> ( -u A x. B ) = -u ( A x. B ) ) |
14 |
8 13
|
breqtrd |
|- ( ( ( A e. RR /\ A < 0 ) /\ ( B e. RR /\ 0 < B ) ) -> 0 < -u ( A x. B ) ) |
15 |
|
remulcl |
|- ( ( A e. RR /\ B e. RR ) -> ( A x. B ) e. RR ) |
16 |
15
|
ad2ant2r |
|- ( ( ( A e. RR /\ A < 0 ) /\ ( B e. RR /\ 0 < B ) ) -> ( A x. B ) e. RR ) |
17 |
16
|
lt0neg1d |
|- ( ( ( A e. RR /\ A < 0 ) /\ ( B e. RR /\ 0 < B ) ) -> ( ( A x. B ) < 0 <-> 0 < -u ( A x. B ) ) ) |
18 |
14 17
|
mpbird |
|- ( ( ( A e. RR /\ A < 0 ) /\ ( B e. RR /\ 0 < B ) ) -> ( A x. B ) < 0 ) |