| Step | Hyp | Ref | Expression | 
						
							| 1 |  | renegcl |  |-  ( A e. RR -> -u A e. RR ) | 
						
							| 2 | 1 | ad2antrr |  |-  ( ( ( A e. RR /\ A < 0 ) /\ ( B e. RR /\ 0 < B ) ) -> -u A e. RR ) | 
						
							| 3 |  | lt0neg1 |  |-  ( A e. RR -> ( A < 0 <-> 0 < -u A ) ) | 
						
							| 4 | 3 | biimpa |  |-  ( ( A e. RR /\ A < 0 ) -> 0 < -u A ) | 
						
							| 5 | 4 | adantr |  |-  ( ( ( A e. RR /\ A < 0 ) /\ ( B e. RR /\ 0 < B ) ) -> 0 < -u A ) | 
						
							| 6 |  | simpr |  |-  ( ( ( A e. RR /\ A < 0 ) /\ ( B e. RR /\ 0 < B ) ) -> ( B e. RR /\ 0 < B ) ) | 
						
							| 7 |  | mulgt0 |  |-  ( ( ( -u A e. RR /\ 0 < -u A ) /\ ( B e. RR /\ 0 < B ) ) -> 0 < ( -u A x. B ) ) | 
						
							| 8 | 2 5 6 7 | syl21anc |  |-  ( ( ( A e. RR /\ A < 0 ) /\ ( B e. RR /\ 0 < B ) ) -> 0 < ( -u A x. B ) ) | 
						
							| 9 |  | recn |  |-  ( A e. RR -> A e. CC ) | 
						
							| 10 | 9 | ad2antrr |  |-  ( ( ( A e. RR /\ A < 0 ) /\ ( B e. RR /\ 0 < B ) ) -> A e. CC ) | 
						
							| 11 |  | recn |  |-  ( B e. RR -> B e. CC ) | 
						
							| 12 | 11 | ad2antrl |  |-  ( ( ( A e. RR /\ A < 0 ) /\ ( B e. RR /\ 0 < B ) ) -> B e. CC ) | 
						
							| 13 | 10 12 | mulneg1d |  |-  ( ( ( A e. RR /\ A < 0 ) /\ ( B e. RR /\ 0 < B ) ) -> ( -u A x. B ) = -u ( A x. B ) ) | 
						
							| 14 | 8 13 | breqtrd |  |-  ( ( ( A e. RR /\ A < 0 ) /\ ( B e. RR /\ 0 < B ) ) -> 0 < -u ( A x. B ) ) | 
						
							| 15 |  | remulcl |  |-  ( ( A e. RR /\ B e. RR ) -> ( A x. B ) e. RR ) | 
						
							| 16 | 15 | ad2ant2r |  |-  ( ( ( A e. RR /\ A < 0 ) /\ ( B e. RR /\ 0 < B ) ) -> ( A x. B ) e. RR ) | 
						
							| 17 | 16 | lt0neg1d |  |-  ( ( ( A e. RR /\ A < 0 ) /\ ( B e. RR /\ 0 < B ) ) -> ( ( A x. B ) < 0 <-> 0 < -u ( A x. B ) ) ) | 
						
							| 18 | 14 17 | mpbird |  |-  ( ( ( A e. RR /\ A < 0 ) /\ ( B e. RR /\ 0 < B ) ) -> ( A x. B ) < 0 ) |