Description: Product with minus one is negative. (Contributed by NM, 16-Nov-1999)
Ref | Expression | ||
---|---|---|---|
Assertion | mulm1 | |- ( A e. CC -> ( -u 1 x. A ) = -u A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn | |- 1 e. CC |
|
2 | mulneg1 | |- ( ( 1 e. CC /\ A e. CC ) -> ( -u 1 x. A ) = -u ( 1 x. A ) ) |
|
3 | 1 2 | mpan | |- ( A e. CC -> ( -u 1 x. A ) = -u ( 1 x. A ) ) |
4 | mulid2 | |- ( A e. CC -> ( 1 x. A ) = A ) |
|
5 | 4 | negeqd | |- ( A e. CC -> -u ( 1 x. A ) = -u A ) |
6 | 3 5 | eqtrd | |- ( A e. CC -> ( -u 1 x. A ) = -u A ) |