Metamath Proof Explorer


Theorem mulm1

Description: Product with minus one is negative. (Contributed by NM, 16-Nov-1999)

Ref Expression
Assertion mulm1
|- ( A e. CC -> ( -u 1 x. A ) = -u A )

Proof

Step Hyp Ref Expression
1 ax-1cn
 |-  1 e. CC
2 mulneg1
 |-  ( ( 1 e. CC /\ A e. CC ) -> ( -u 1 x. A ) = -u ( 1 x. A ) )
3 1 2 mpan
 |-  ( A e. CC -> ( -u 1 x. A ) = -u ( 1 x. A ) )
4 mulid2
 |-  ( A e. CC -> ( 1 x. A ) = A )
5 4 negeqd
 |-  ( A e. CC -> -u ( 1 x. A ) = -u A )
6 3 5 eqtrd
 |-  ( A e. CC -> ( -u 1 x. A ) = -u A )