Metamath Proof Explorer


Theorem mulne0d

Description: The product of two nonzero numbers is nonzero. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses msq0d.1
|- ( ph -> A e. CC )
mul0ord.2
|- ( ph -> B e. CC )
mulne0d.3
|- ( ph -> A =/= 0 )
mulne0d.4
|- ( ph -> B =/= 0 )
Assertion mulne0d
|- ( ph -> ( A x. B ) =/= 0 )

Proof

Step Hyp Ref Expression
1 msq0d.1
 |-  ( ph -> A e. CC )
2 mul0ord.2
 |-  ( ph -> B e. CC )
3 mulne0d.3
 |-  ( ph -> A =/= 0 )
4 mulne0d.4
 |-  ( ph -> B =/= 0 )
5 1 2 mulne0bd
 |-  ( ph -> ( ( A =/= 0 /\ B =/= 0 ) <-> ( A x. B ) =/= 0 ) )
6 3 4 5 mpbi2and
 |-  ( ph -> ( A x. B ) =/= 0 )