Description: The product of two nonzero numbers is nonzero. (Contributed by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | msq0d.1 | |- ( ph -> A e. CC ) |
|
| mul0ord.2 | |- ( ph -> B e. CC ) |
||
| mulne0d.3 | |- ( ph -> A =/= 0 ) |
||
| mulne0d.4 | |- ( ph -> B =/= 0 ) |
||
| Assertion | mulne0d | |- ( ph -> ( A x. B ) =/= 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | msq0d.1 | |- ( ph -> A e. CC ) |
|
| 2 | mul0ord.2 | |- ( ph -> B e. CC ) |
|
| 3 | mulne0d.3 | |- ( ph -> A =/= 0 ) |
|
| 4 | mulne0d.4 | |- ( ph -> B =/= 0 ) |
|
| 5 | 1 2 | mulne0bd | |- ( ph -> ( ( A =/= 0 /\ B =/= 0 ) <-> ( A x. B ) =/= 0 ) ) |
| 6 | 3 4 5 | mpbi2and | |- ( ph -> ( A x. B ) =/= 0 ) |