| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0cn |
|- 0 e. CC |
| 2 |
|
subdir |
|- ( ( 0 e. CC /\ A e. CC /\ B e. CC ) -> ( ( 0 - A ) x. B ) = ( ( 0 x. B ) - ( A x. B ) ) ) |
| 3 |
1 2
|
mp3an1 |
|- ( ( A e. CC /\ B e. CC ) -> ( ( 0 - A ) x. B ) = ( ( 0 x. B ) - ( A x. B ) ) ) |
| 4 |
|
simpr |
|- ( ( A e. CC /\ B e. CC ) -> B e. CC ) |
| 5 |
4
|
mul02d |
|- ( ( A e. CC /\ B e. CC ) -> ( 0 x. B ) = 0 ) |
| 6 |
5
|
oveq1d |
|- ( ( A e. CC /\ B e. CC ) -> ( ( 0 x. B ) - ( A x. B ) ) = ( 0 - ( A x. B ) ) ) |
| 7 |
3 6
|
eqtrd |
|- ( ( A e. CC /\ B e. CC ) -> ( ( 0 - A ) x. B ) = ( 0 - ( A x. B ) ) ) |
| 8 |
|
df-neg |
|- -u A = ( 0 - A ) |
| 9 |
8
|
oveq1i |
|- ( -u A x. B ) = ( ( 0 - A ) x. B ) |
| 10 |
|
df-neg |
|- -u ( A x. B ) = ( 0 - ( A x. B ) ) |
| 11 |
7 9 10
|
3eqtr4g |
|- ( ( A e. CC /\ B e. CC ) -> ( -u A x. B ) = -u ( A x. B ) ) |