Description: Product with negative is negative of product. Theorem I.12 of Apostol p. 18. (Contributed by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mulm1d.1 | |- ( ph -> A e. CC ) | |
| mulnegd.2 | |- ( ph -> B e. CC ) | ||
| Assertion | mulneg1d | |- ( ph -> ( -u A x. B ) = -u ( A x. B ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | mulm1d.1 | |- ( ph -> A e. CC ) | |
| 2 | mulnegd.2 | |- ( ph -> B e. CC ) | |
| 3 | mulneg1 | |- ( ( A e. CC /\ B e. CC ) -> ( -u A x. B ) = -u ( A x. B ) ) | |
| 4 | 1 2 3 | syl2anc | |- ( ph -> ( -u A x. B ) = -u ( A x. B ) ) |