Description: Product with negative is negative of product. Theorem I.12 of Apostol p. 18. (Contributed by Mario Carneiro, 27-May-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mulm1d.1 | |- ( ph -> A e. CC ) |
|
mulnegd.2 | |- ( ph -> B e. CC ) |
||
Assertion | mulneg1d | |- ( ph -> ( -u A x. B ) = -u ( A x. B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mulm1d.1 | |- ( ph -> A e. CC ) |
|
2 | mulnegd.2 | |- ( ph -> B e. CC ) |
|
3 | mulneg1 | |- ( ( A e. CC /\ B e. CC ) -> ( -u A x. B ) = -u ( A x. B ) ) |
|
4 | 1 2 3 | syl2anc | |- ( ph -> ( -u A x. B ) = -u ( A x. B ) ) |