Step |
Hyp |
Ref |
Expression |
1 |
|
mulneg1 |
|- ( ( B e. CC /\ A e. CC ) -> ( -u B x. A ) = -u ( B x. A ) ) |
2 |
1
|
ancoms |
|- ( ( A e. CC /\ B e. CC ) -> ( -u B x. A ) = -u ( B x. A ) ) |
3 |
|
negcl |
|- ( B e. CC -> -u B e. CC ) |
4 |
|
mulcom |
|- ( ( A e. CC /\ -u B e. CC ) -> ( A x. -u B ) = ( -u B x. A ) ) |
5 |
3 4
|
sylan2 |
|- ( ( A e. CC /\ B e. CC ) -> ( A x. -u B ) = ( -u B x. A ) ) |
6 |
|
mulcom |
|- ( ( A e. CC /\ B e. CC ) -> ( A x. B ) = ( B x. A ) ) |
7 |
6
|
negeqd |
|- ( ( A e. CC /\ B e. CC ) -> -u ( A x. B ) = -u ( B x. A ) ) |
8 |
2 5 7
|
3eqtr4d |
|- ( ( A e. CC /\ B e. CC ) -> ( A x. -u B ) = -u ( A x. B ) ) |