| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mulneg1 |
|- ( ( B e. CC /\ A e. CC ) -> ( -u B x. A ) = -u ( B x. A ) ) |
| 2 |
1
|
ancoms |
|- ( ( A e. CC /\ B e. CC ) -> ( -u B x. A ) = -u ( B x. A ) ) |
| 3 |
|
negcl |
|- ( B e. CC -> -u B e. CC ) |
| 4 |
|
mulcom |
|- ( ( A e. CC /\ -u B e. CC ) -> ( A x. -u B ) = ( -u B x. A ) ) |
| 5 |
3 4
|
sylan2 |
|- ( ( A e. CC /\ B e. CC ) -> ( A x. -u B ) = ( -u B x. A ) ) |
| 6 |
|
mulcom |
|- ( ( A e. CC /\ B e. CC ) -> ( A x. B ) = ( B x. A ) ) |
| 7 |
6
|
negeqd |
|- ( ( A e. CC /\ B e. CC ) -> -u ( A x. B ) = -u ( B x. A ) ) |
| 8 |
2 5 7
|
3eqtr4d |
|- ( ( A e. CC /\ B e. CC ) -> ( A x. -u B ) = -u ( A x. B ) ) |