Description: Product with negative is negative of product. (Contributed by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mulm1d.1 | |- ( ph -> A e. CC ) |
|
| mulnegd.2 | |- ( ph -> B e. CC ) |
||
| Assertion | mulneg2d | |- ( ph -> ( A x. -u B ) = -u ( A x. B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulm1d.1 | |- ( ph -> A e. CC ) |
|
| 2 | mulnegd.2 | |- ( ph -> B e. CC ) |
|
| 3 | mulneg2 | |- ( ( A e. CC /\ B e. CC ) -> ( A x. -u B ) = -u ( A x. B ) ) |
|
| 4 | 1 2 3 | syl2anc | |- ( ph -> ( A x. -u B ) = -u ( A x. B ) ) |