| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ax-mulf |
|- x. : ( CC X. CC ) --> CC |
| 2 |
|
ffnov |
|- ( x. : ( CC X. CC ) --> CC <-> ( x. Fn ( CC X. CC ) /\ A. x e. CC A. y e. CC ( x x. y ) e. CC ) ) |
| 3 |
1 2
|
mpbi |
|- ( x. Fn ( CC X. CC ) /\ A. x e. CC A. y e. CC ( x x. y ) e. CC ) |
| 4 |
3
|
simpli |
|- x. Fn ( CC X. CC ) |
| 5 |
|
difss |
|- ( CC \ { 0 } ) C_ CC |
| 6 |
|
xpss12 |
|- ( ( ( CC \ { 0 } ) C_ CC /\ ( CC \ { 0 } ) C_ CC ) -> ( ( CC \ { 0 } ) X. ( CC \ { 0 } ) ) C_ ( CC X. CC ) ) |
| 7 |
5 5 6
|
mp2an |
|- ( ( CC \ { 0 } ) X. ( CC \ { 0 } ) ) C_ ( CC X. CC ) |
| 8 |
|
fnssres |
|- ( ( x. Fn ( CC X. CC ) /\ ( ( CC \ { 0 } ) X. ( CC \ { 0 } ) ) C_ ( CC X. CC ) ) -> ( x. |` ( ( CC \ { 0 } ) X. ( CC \ { 0 } ) ) ) Fn ( ( CC \ { 0 } ) X. ( CC \ { 0 } ) ) ) |
| 9 |
4 7 8
|
mp2an |
|- ( x. |` ( ( CC \ { 0 } ) X. ( CC \ { 0 } ) ) ) Fn ( ( CC \ { 0 } ) X. ( CC \ { 0 } ) ) |
| 10 |
|
ovres |
|- ( ( x e. ( CC \ { 0 } ) /\ y e. ( CC \ { 0 } ) ) -> ( x ( x. |` ( ( CC \ { 0 } ) X. ( CC \ { 0 } ) ) ) y ) = ( x x. y ) ) |
| 11 |
|
eldifsn |
|- ( x e. ( CC \ { 0 } ) <-> ( x e. CC /\ x =/= 0 ) ) |
| 12 |
|
eldifsn |
|- ( y e. ( CC \ { 0 } ) <-> ( y e. CC /\ y =/= 0 ) ) |
| 13 |
|
mulcl |
|- ( ( x e. CC /\ y e. CC ) -> ( x x. y ) e. CC ) |
| 14 |
13
|
ad2ant2r |
|- ( ( ( x e. CC /\ x =/= 0 ) /\ ( y e. CC /\ y =/= 0 ) ) -> ( x x. y ) e. CC ) |
| 15 |
|
mulne0 |
|- ( ( ( x e. CC /\ x =/= 0 ) /\ ( y e. CC /\ y =/= 0 ) ) -> ( x x. y ) =/= 0 ) |
| 16 |
14 15
|
jca |
|- ( ( ( x e. CC /\ x =/= 0 ) /\ ( y e. CC /\ y =/= 0 ) ) -> ( ( x x. y ) e. CC /\ ( x x. y ) =/= 0 ) ) |
| 17 |
11 12 16
|
syl2anb |
|- ( ( x e. ( CC \ { 0 } ) /\ y e. ( CC \ { 0 } ) ) -> ( ( x x. y ) e. CC /\ ( x x. y ) =/= 0 ) ) |
| 18 |
|
eldifsn |
|- ( ( x x. y ) e. ( CC \ { 0 } ) <-> ( ( x x. y ) e. CC /\ ( x x. y ) =/= 0 ) ) |
| 19 |
17 18
|
sylibr |
|- ( ( x e. ( CC \ { 0 } ) /\ y e. ( CC \ { 0 } ) ) -> ( x x. y ) e. ( CC \ { 0 } ) ) |
| 20 |
10 19
|
eqeltrd |
|- ( ( x e. ( CC \ { 0 } ) /\ y e. ( CC \ { 0 } ) ) -> ( x ( x. |` ( ( CC \ { 0 } ) X. ( CC \ { 0 } ) ) ) y ) e. ( CC \ { 0 } ) ) |
| 21 |
20
|
rgen2 |
|- A. x e. ( CC \ { 0 } ) A. y e. ( CC \ { 0 } ) ( x ( x. |` ( ( CC \ { 0 } ) X. ( CC \ { 0 } ) ) ) y ) e. ( CC \ { 0 } ) |
| 22 |
|
ffnov |
|- ( ( x. |` ( ( CC \ { 0 } ) X. ( CC \ { 0 } ) ) ) : ( ( CC \ { 0 } ) X. ( CC \ { 0 } ) ) --> ( CC \ { 0 } ) <-> ( ( x. |` ( ( CC \ { 0 } ) X. ( CC \ { 0 } ) ) ) Fn ( ( CC \ { 0 } ) X. ( CC \ { 0 } ) ) /\ A. x e. ( CC \ { 0 } ) A. y e. ( CC \ { 0 } ) ( x ( x. |` ( ( CC \ { 0 } ) X. ( CC \ { 0 } ) ) ) y ) e. ( CC \ { 0 } ) ) ) |
| 23 |
9 21 22
|
mpbir2an |
|- ( x. |` ( ( CC \ { 0 } ) X. ( CC \ { 0 } ) ) ) : ( ( CC \ { 0 } ) X. ( CC \ { 0 } ) ) --> ( CC \ { 0 } ) |