| Step |
Hyp |
Ref |
Expression |
| 1 |
|
logdivsum.1 |
|- F = ( y e. RR+ |-> ( sum_ i e. ( 1 ... ( |_ ` y ) ) ( ( log ` i ) / i ) - ( ( ( log ` y ) ^ 2 ) / 2 ) ) ) |
| 2 |
|
mulog2sumlem.1 |
|- ( ph -> F ~~>r L ) |
| 3 |
|
mulog2sumlem1.2 |
|- ( ph -> A e. RR+ ) |
| 4 |
|
mulog2sumlem1.3 |
|- ( ph -> _e <_ A ) |
| 5 |
|
fzfid |
|- ( ph -> ( 1 ... ( |_ ` A ) ) e. Fin ) |
| 6 |
|
elfznn |
|- ( m e. ( 1 ... ( |_ ` A ) ) -> m e. NN ) |
| 7 |
6
|
nnrpd |
|- ( m e. ( 1 ... ( |_ ` A ) ) -> m e. RR+ ) |
| 8 |
|
rpdivcl |
|- ( ( A e. RR+ /\ m e. RR+ ) -> ( A / m ) e. RR+ ) |
| 9 |
3 7 8
|
syl2an |
|- ( ( ph /\ m e. ( 1 ... ( |_ ` A ) ) ) -> ( A / m ) e. RR+ ) |
| 10 |
9
|
relogcld |
|- ( ( ph /\ m e. ( 1 ... ( |_ ` A ) ) ) -> ( log ` ( A / m ) ) e. RR ) |
| 11 |
6
|
adantl |
|- ( ( ph /\ m e. ( 1 ... ( |_ ` A ) ) ) -> m e. NN ) |
| 12 |
10 11
|
nndivred |
|- ( ( ph /\ m e. ( 1 ... ( |_ ` A ) ) ) -> ( ( log ` ( A / m ) ) / m ) e. RR ) |
| 13 |
5 12
|
fsumrecl |
|- ( ph -> sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` ( A / m ) ) / m ) e. RR ) |
| 14 |
3
|
relogcld |
|- ( ph -> ( log ` A ) e. RR ) |
| 15 |
14
|
resqcld |
|- ( ph -> ( ( log ` A ) ^ 2 ) e. RR ) |
| 16 |
15
|
rehalfcld |
|- ( ph -> ( ( ( log ` A ) ^ 2 ) / 2 ) e. RR ) |
| 17 |
|
emre |
|- gamma e. RR |
| 18 |
|
remulcl |
|- ( ( gamma e. RR /\ ( log ` A ) e. RR ) -> ( gamma x. ( log ` A ) ) e. RR ) |
| 19 |
17 14 18
|
sylancr |
|- ( ph -> ( gamma x. ( log ` A ) ) e. RR ) |
| 20 |
|
rpsup |
|- sup ( RR+ , RR* , < ) = +oo |
| 21 |
20
|
a1i |
|- ( ph -> sup ( RR+ , RR* , < ) = +oo ) |
| 22 |
1
|
logdivsum |
|- ( F : RR+ --> RR /\ F e. dom ~~>r /\ ( ( F ~~>r L /\ A e. RR+ /\ _e <_ A ) -> ( abs ` ( ( F ` A ) - L ) ) <_ ( ( log ` A ) / A ) ) ) |
| 23 |
22
|
simp1i |
|- F : RR+ --> RR |
| 24 |
23
|
a1i |
|- ( ph -> F : RR+ --> RR ) |
| 25 |
24
|
feqmptd |
|- ( ph -> F = ( x e. RR+ |-> ( F ` x ) ) ) |
| 26 |
25 2
|
eqbrtrrd |
|- ( ph -> ( x e. RR+ |-> ( F ` x ) ) ~~>r L ) |
| 27 |
23
|
ffvelcdmi |
|- ( x e. RR+ -> ( F ` x ) e. RR ) |
| 28 |
27
|
adantl |
|- ( ( ph /\ x e. RR+ ) -> ( F ` x ) e. RR ) |
| 29 |
21 26 28
|
rlimrecl |
|- ( ph -> L e. RR ) |
| 30 |
19 29
|
resubcld |
|- ( ph -> ( ( gamma x. ( log ` A ) ) - L ) e. RR ) |
| 31 |
16 30
|
readdcld |
|- ( ph -> ( ( ( ( log ` A ) ^ 2 ) / 2 ) + ( ( gamma x. ( log ` A ) ) - L ) ) e. RR ) |
| 32 |
13 31
|
resubcld |
|- ( ph -> ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` ( A / m ) ) / m ) - ( ( ( ( log ` A ) ^ 2 ) / 2 ) + ( ( gamma x. ( log ` A ) ) - L ) ) ) e. RR ) |
| 33 |
32
|
recnd |
|- ( ph -> ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` ( A / m ) ) / m ) - ( ( ( ( log ` A ) ^ 2 ) / 2 ) + ( ( gamma x. ( log ` A ) ) - L ) ) ) e. CC ) |
| 34 |
33
|
abscld |
|- ( ph -> ( abs ` ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` ( A / m ) ) / m ) - ( ( ( ( log ` A ) ^ 2 ) / 2 ) + ( ( gamma x. ( log ` A ) ) - L ) ) ) ) e. RR ) |
| 35 |
|
rerpdivcl |
|- ( ( ( log ` A ) e. RR /\ m e. RR+ ) -> ( ( log ` A ) / m ) e. RR ) |
| 36 |
14 7 35
|
syl2an |
|- ( ( ph /\ m e. ( 1 ... ( |_ ` A ) ) ) -> ( ( log ` A ) / m ) e. RR ) |
| 37 |
36
|
recnd |
|- ( ( ph /\ m e. ( 1 ... ( |_ ` A ) ) ) -> ( ( log ` A ) / m ) e. CC ) |
| 38 |
5 37
|
fsumcl |
|- ( ph -> sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` A ) / m ) e. CC ) |
| 39 |
14
|
recnd |
|- ( ph -> ( log ` A ) e. CC ) |
| 40 |
|
readdcl |
|- ( ( ( log ` A ) e. RR /\ gamma e. RR ) -> ( ( log ` A ) + gamma ) e. RR ) |
| 41 |
14 17 40
|
sylancl |
|- ( ph -> ( ( log ` A ) + gamma ) e. RR ) |
| 42 |
41
|
recnd |
|- ( ph -> ( ( log ` A ) + gamma ) e. CC ) |
| 43 |
39 42
|
mulcld |
|- ( ph -> ( ( log ` A ) x. ( ( log ` A ) + gamma ) ) e. CC ) |
| 44 |
38 43
|
subcld |
|- ( ph -> ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` A ) / m ) - ( ( log ` A ) x. ( ( log ` A ) + gamma ) ) ) e. CC ) |
| 45 |
44
|
abscld |
|- ( ph -> ( abs ` ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` A ) / m ) - ( ( log ` A ) x. ( ( log ` A ) + gamma ) ) ) ) e. RR ) |
| 46 |
11
|
nnrpd |
|- ( ( ph /\ m e. ( 1 ... ( |_ ` A ) ) ) -> m e. RR+ ) |
| 47 |
46
|
relogcld |
|- ( ( ph /\ m e. ( 1 ... ( |_ ` A ) ) ) -> ( log ` m ) e. RR ) |
| 48 |
47 11
|
nndivred |
|- ( ( ph /\ m e. ( 1 ... ( |_ ` A ) ) ) -> ( ( log ` m ) / m ) e. RR ) |
| 49 |
48
|
recnd |
|- ( ( ph /\ m e. ( 1 ... ( |_ ` A ) ) ) -> ( ( log ` m ) / m ) e. CC ) |
| 50 |
5 49
|
fsumcl |
|- ( ph -> sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` m ) / m ) e. CC ) |
| 51 |
16
|
recnd |
|- ( ph -> ( ( ( log ` A ) ^ 2 ) / 2 ) e. CC ) |
| 52 |
29
|
recnd |
|- ( ph -> L e. CC ) |
| 53 |
51 52
|
addcld |
|- ( ph -> ( ( ( ( log ` A ) ^ 2 ) / 2 ) + L ) e. CC ) |
| 54 |
50 53
|
subcld |
|- ( ph -> ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` m ) / m ) - ( ( ( ( log ` A ) ^ 2 ) / 2 ) + L ) ) e. CC ) |
| 55 |
54
|
abscld |
|- ( ph -> ( abs ` ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` m ) / m ) - ( ( ( ( log ` A ) ^ 2 ) / 2 ) + L ) ) ) e. RR ) |
| 56 |
45 55
|
readdcld |
|- ( ph -> ( ( abs ` ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` A ) / m ) - ( ( log ` A ) x. ( ( log ` A ) + gamma ) ) ) ) + ( abs ` ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` m ) / m ) - ( ( ( ( log ` A ) ^ 2 ) / 2 ) + L ) ) ) ) e. RR ) |
| 57 |
|
2re |
|- 2 e. RR |
| 58 |
14 3
|
rerpdivcld |
|- ( ph -> ( ( log ` A ) / A ) e. RR ) |
| 59 |
|
remulcl |
|- ( ( 2 e. RR /\ ( ( log ` A ) / A ) e. RR ) -> ( 2 x. ( ( log ` A ) / A ) ) e. RR ) |
| 60 |
57 58 59
|
sylancr |
|- ( ph -> ( 2 x. ( ( log ` A ) / A ) ) e. RR ) |
| 61 |
|
relogdiv |
|- ( ( A e. RR+ /\ m e. RR+ ) -> ( log ` ( A / m ) ) = ( ( log ` A ) - ( log ` m ) ) ) |
| 62 |
3 7 61
|
syl2an |
|- ( ( ph /\ m e. ( 1 ... ( |_ ` A ) ) ) -> ( log ` ( A / m ) ) = ( ( log ` A ) - ( log ` m ) ) ) |
| 63 |
62
|
oveq1d |
|- ( ( ph /\ m e. ( 1 ... ( |_ ` A ) ) ) -> ( ( log ` ( A / m ) ) / m ) = ( ( ( log ` A ) - ( log ` m ) ) / m ) ) |
| 64 |
39
|
adantr |
|- ( ( ph /\ m e. ( 1 ... ( |_ ` A ) ) ) -> ( log ` A ) e. CC ) |
| 65 |
47
|
recnd |
|- ( ( ph /\ m e. ( 1 ... ( |_ ` A ) ) ) -> ( log ` m ) e. CC ) |
| 66 |
46
|
rpcnne0d |
|- ( ( ph /\ m e. ( 1 ... ( |_ ` A ) ) ) -> ( m e. CC /\ m =/= 0 ) ) |
| 67 |
|
divsubdir |
|- ( ( ( log ` A ) e. CC /\ ( log ` m ) e. CC /\ ( m e. CC /\ m =/= 0 ) ) -> ( ( ( log ` A ) - ( log ` m ) ) / m ) = ( ( ( log ` A ) / m ) - ( ( log ` m ) / m ) ) ) |
| 68 |
64 65 66 67
|
syl3anc |
|- ( ( ph /\ m e. ( 1 ... ( |_ ` A ) ) ) -> ( ( ( log ` A ) - ( log ` m ) ) / m ) = ( ( ( log ` A ) / m ) - ( ( log ` m ) / m ) ) ) |
| 69 |
63 68
|
eqtrd |
|- ( ( ph /\ m e. ( 1 ... ( |_ ` A ) ) ) -> ( ( log ` ( A / m ) ) / m ) = ( ( ( log ` A ) / m ) - ( ( log ` m ) / m ) ) ) |
| 70 |
69
|
sumeq2dv |
|- ( ph -> sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` ( A / m ) ) / m ) = sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( ( log ` A ) / m ) - ( ( log ` m ) / m ) ) ) |
| 71 |
5 37 49
|
fsumsub |
|- ( ph -> sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( ( log ` A ) / m ) - ( ( log ` m ) / m ) ) = ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` A ) / m ) - sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` m ) / m ) ) ) |
| 72 |
70 71
|
eqtrd |
|- ( ph -> sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` ( A / m ) ) / m ) = ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` A ) / m ) - sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` m ) / m ) ) ) |
| 73 |
|
remulcl |
|- ( ( ( log ` A ) e. RR /\ gamma e. RR ) -> ( ( log ` A ) x. gamma ) e. RR ) |
| 74 |
14 17 73
|
sylancl |
|- ( ph -> ( ( log ` A ) x. gamma ) e. RR ) |
| 75 |
16 74
|
readdcld |
|- ( ph -> ( ( ( ( log ` A ) ^ 2 ) / 2 ) + ( ( log ` A ) x. gamma ) ) e. RR ) |
| 76 |
75
|
recnd |
|- ( ph -> ( ( ( ( log ` A ) ^ 2 ) / 2 ) + ( ( log ` A ) x. gamma ) ) e. CC ) |
| 77 |
76 51
|
pncand |
|- ( ph -> ( ( ( ( ( ( log ` A ) ^ 2 ) / 2 ) + ( ( log ` A ) x. gamma ) ) + ( ( ( log ` A ) ^ 2 ) / 2 ) ) - ( ( ( log ` A ) ^ 2 ) / 2 ) ) = ( ( ( ( log ` A ) ^ 2 ) / 2 ) + ( ( log ` A ) x. gamma ) ) ) |
| 78 |
17
|
recni |
|- gamma e. CC |
| 79 |
78
|
a1i |
|- ( ph -> gamma e. CC ) |
| 80 |
39 39 79
|
adddid |
|- ( ph -> ( ( log ` A ) x. ( ( log ` A ) + gamma ) ) = ( ( ( log ` A ) x. ( log ` A ) ) + ( ( log ` A ) x. gamma ) ) ) |
| 81 |
15
|
recnd |
|- ( ph -> ( ( log ` A ) ^ 2 ) e. CC ) |
| 82 |
81
|
2halvesd |
|- ( ph -> ( ( ( ( log ` A ) ^ 2 ) / 2 ) + ( ( ( log ` A ) ^ 2 ) / 2 ) ) = ( ( log ` A ) ^ 2 ) ) |
| 83 |
39
|
sqvald |
|- ( ph -> ( ( log ` A ) ^ 2 ) = ( ( log ` A ) x. ( log ` A ) ) ) |
| 84 |
82 83
|
eqtrd |
|- ( ph -> ( ( ( ( log ` A ) ^ 2 ) / 2 ) + ( ( ( log ` A ) ^ 2 ) / 2 ) ) = ( ( log ` A ) x. ( log ` A ) ) ) |
| 85 |
84
|
oveq1d |
|- ( ph -> ( ( ( ( ( log ` A ) ^ 2 ) / 2 ) + ( ( ( log ` A ) ^ 2 ) / 2 ) ) + ( ( log ` A ) x. gamma ) ) = ( ( ( log ` A ) x. ( log ` A ) ) + ( ( log ` A ) x. gamma ) ) ) |
| 86 |
74
|
recnd |
|- ( ph -> ( ( log ` A ) x. gamma ) e. CC ) |
| 87 |
51 51 86
|
add32d |
|- ( ph -> ( ( ( ( ( log ` A ) ^ 2 ) / 2 ) + ( ( ( log ` A ) ^ 2 ) / 2 ) ) + ( ( log ` A ) x. gamma ) ) = ( ( ( ( ( log ` A ) ^ 2 ) / 2 ) + ( ( log ` A ) x. gamma ) ) + ( ( ( log ` A ) ^ 2 ) / 2 ) ) ) |
| 88 |
80 85 87
|
3eqtr2d |
|- ( ph -> ( ( log ` A ) x. ( ( log ` A ) + gamma ) ) = ( ( ( ( ( log ` A ) ^ 2 ) / 2 ) + ( ( log ` A ) x. gamma ) ) + ( ( ( log ` A ) ^ 2 ) / 2 ) ) ) |
| 89 |
88
|
oveq1d |
|- ( ph -> ( ( ( log ` A ) x. ( ( log ` A ) + gamma ) ) - ( ( ( log ` A ) ^ 2 ) / 2 ) ) = ( ( ( ( ( ( log ` A ) ^ 2 ) / 2 ) + ( ( log ` A ) x. gamma ) ) + ( ( ( log ` A ) ^ 2 ) / 2 ) ) - ( ( ( log ` A ) ^ 2 ) / 2 ) ) ) |
| 90 |
|
mulcom |
|- ( ( gamma e. CC /\ ( log ` A ) e. CC ) -> ( gamma x. ( log ` A ) ) = ( ( log ` A ) x. gamma ) ) |
| 91 |
78 39 90
|
sylancr |
|- ( ph -> ( gamma x. ( log ` A ) ) = ( ( log ` A ) x. gamma ) ) |
| 92 |
91
|
oveq2d |
|- ( ph -> ( ( ( ( log ` A ) ^ 2 ) / 2 ) + ( gamma x. ( log ` A ) ) ) = ( ( ( ( log ` A ) ^ 2 ) / 2 ) + ( ( log ` A ) x. gamma ) ) ) |
| 93 |
77 89 92
|
3eqtr4rd |
|- ( ph -> ( ( ( ( log ` A ) ^ 2 ) / 2 ) + ( gamma x. ( log ` A ) ) ) = ( ( ( log ` A ) x. ( ( log ` A ) + gamma ) ) - ( ( ( log ` A ) ^ 2 ) / 2 ) ) ) |
| 94 |
93
|
oveq1d |
|- ( ph -> ( ( ( ( ( log ` A ) ^ 2 ) / 2 ) + ( gamma x. ( log ` A ) ) ) - L ) = ( ( ( ( log ` A ) x. ( ( log ` A ) + gamma ) ) - ( ( ( log ` A ) ^ 2 ) / 2 ) ) - L ) ) |
| 95 |
91 86
|
eqeltrd |
|- ( ph -> ( gamma x. ( log ` A ) ) e. CC ) |
| 96 |
51 95 52
|
addsubassd |
|- ( ph -> ( ( ( ( ( log ` A ) ^ 2 ) / 2 ) + ( gamma x. ( log ` A ) ) ) - L ) = ( ( ( ( log ` A ) ^ 2 ) / 2 ) + ( ( gamma x. ( log ` A ) ) - L ) ) ) |
| 97 |
43 51 52
|
subsub4d |
|- ( ph -> ( ( ( ( log ` A ) x. ( ( log ` A ) + gamma ) ) - ( ( ( log ` A ) ^ 2 ) / 2 ) ) - L ) = ( ( ( log ` A ) x. ( ( log ` A ) + gamma ) ) - ( ( ( ( log ` A ) ^ 2 ) / 2 ) + L ) ) ) |
| 98 |
94 96 97
|
3eqtr3d |
|- ( ph -> ( ( ( ( log ` A ) ^ 2 ) / 2 ) + ( ( gamma x. ( log ` A ) ) - L ) ) = ( ( ( log ` A ) x. ( ( log ` A ) + gamma ) ) - ( ( ( ( log ` A ) ^ 2 ) / 2 ) + L ) ) ) |
| 99 |
72 98
|
oveq12d |
|- ( ph -> ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` ( A / m ) ) / m ) - ( ( ( ( log ` A ) ^ 2 ) / 2 ) + ( ( gamma x. ( log ` A ) ) - L ) ) ) = ( ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` A ) / m ) - sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` m ) / m ) ) - ( ( ( log ` A ) x. ( ( log ` A ) + gamma ) ) - ( ( ( ( log ` A ) ^ 2 ) / 2 ) + L ) ) ) ) |
| 100 |
38 50 43 53
|
sub4d |
|- ( ph -> ( ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` A ) / m ) - sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` m ) / m ) ) - ( ( ( log ` A ) x. ( ( log ` A ) + gamma ) ) - ( ( ( ( log ` A ) ^ 2 ) / 2 ) + L ) ) ) = ( ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` A ) / m ) - ( ( log ` A ) x. ( ( log ` A ) + gamma ) ) ) - ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` m ) / m ) - ( ( ( ( log ` A ) ^ 2 ) / 2 ) + L ) ) ) ) |
| 101 |
99 100
|
eqtrd |
|- ( ph -> ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` ( A / m ) ) / m ) - ( ( ( ( log ` A ) ^ 2 ) / 2 ) + ( ( gamma x. ( log ` A ) ) - L ) ) ) = ( ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` A ) / m ) - ( ( log ` A ) x. ( ( log ` A ) + gamma ) ) ) - ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` m ) / m ) - ( ( ( ( log ` A ) ^ 2 ) / 2 ) + L ) ) ) ) |
| 102 |
101
|
fveq2d |
|- ( ph -> ( abs ` ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` ( A / m ) ) / m ) - ( ( ( ( log ` A ) ^ 2 ) / 2 ) + ( ( gamma x. ( log ` A ) ) - L ) ) ) ) = ( abs ` ( ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` A ) / m ) - ( ( log ` A ) x. ( ( log ` A ) + gamma ) ) ) - ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` m ) / m ) - ( ( ( ( log ` A ) ^ 2 ) / 2 ) + L ) ) ) ) ) |
| 103 |
44 54
|
abs2dif2d |
|- ( ph -> ( abs ` ( ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` A ) / m ) - ( ( log ` A ) x. ( ( log ` A ) + gamma ) ) ) - ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` m ) / m ) - ( ( ( ( log ` A ) ^ 2 ) / 2 ) + L ) ) ) ) <_ ( ( abs ` ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` A ) / m ) - ( ( log ` A ) x. ( ( log ` A ) + gamma ) ) ) ) + ( abs ` ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` m ) / m ) - ( ( ( ( log ` A ) ^ 2 ) / 2 ) + L ) ) ) ) ) |
| 104 |
102 103
|
eqbrtrd |
|- ( ph -> ( abs ` ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` ( A / m ) ) / m ) - ( ( ( ( log ` A ) ^ 2 ) / 2 ) + ( ( gamma x. ( log ` A ) ) - L ) ) ) ) <_ ( ( abs ` ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` A ) / m ) - ( ( log ` A ) x. ( ( log ` A ) + gamma ) ) ) ) + ( abs ` ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` m ) / m ) - ( ( ( ( log ` A ) ^ 2 ) / 2 ) + L ) ) ) ) ) |
| 105 |
|
harmonicbnd4 |
|- ( A e. RR+ -> ( abs ` ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( ( log ` A ) + gamma ) ) ) <_ ( 1 / A ) ) |
| 106 |
3 105
|
syl |
|- ( ph -> ( abs ` ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( ( log ` A ) + gamma ) ) ) <_ ( 1 / A ) ) |
| 107 |
11
|
nnrecred |
|- ( ( ph /\ m e. ( 1 ... ( |_ ` A ) ) ) -> ( 1 / m ) e. RR ) |
| 108 |
5 107
|
fsumrecl |
|- ( ph -> sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) e. RR ) |
| 109 |
108 41
|
resubcld |
|- ( ph -> ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( ( log ` A ) + gamma ) ) e. RR ) |
| 110 |
109
|
recnd |
|- ( ph -> ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( ( log ` A ) + gamma ) ) e. CC ) |
| 111 |
110
|
abscld |
|- ( ph -> ( abs ` ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( ( log ` A ) + gamma ) ) ) e. RR ) |
| 112 |
3
|
rprecred |
|- ( ph -> ( 1 / A ) e. RR ) |
| 113 |
|
0red |
|- ( ph -> 0 e. RR ) |
| 114 |
|
1red |
|- ( ph -> 1 e. RR ) |
| 115 |
|
0lt1 |
|- 0 < 1 |
| 116 |
115
|
a1i |
|- ( ph -> 0 < 1 ) |
| 117 |
|
loge |
|- ( log ` _e ) = 1 |
| 118 |
|
epr |
|- _e e. RR+ |
| 119 |
|
logleb |
|- ( ( _e e. RR+ /\ A e. RR+ ) -> ( _e <_ A <-> ( log ` _e ) <_ ( log ` A ) ) ) |
| 120 |
118 3 119
|
sylancr |
|- ( ph -> ( _e <_ A <-> ( log ` _e ) <_ ( log ` A ) ) ) |
| 121 |
4 120
|
mpbid |
|- ( ph -> ( log ` _e ) <_ ( log ` A ) ) |
| 122 |
117 121
|
eqbrtrrid |
|- ( ph -> 1 <_ ( log ` A ) ) |
| 123 |
113 114 14 116 122
|
ltletrd |
|- ( ph -> 0 < ( log ` A ) ) |
| 124 |
|
lemul2 |
|- ( ( ( abs ` ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( ( log ` A ) + gamma ) ) ) e. RR /\ ( 1 / A ) e. RR /\ ( ( log ` A ) e. RR /\ 0 < ( log ` A ) ) ) -> ( ( abs ` ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( ( log ` A ) + gamma ) ) ) <_ ( 1 / A ) <-> ( ( log ` A ) x. ( abs ` ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( ( log ` A ) + gamma ) ) ) ) <_ ( ( log ` A ) x. ( 1 / A ) ) ) ) |
| 125 |
111 112 14 123 124
|
syl112anc |
|- ( ph -> ( ( abs ` ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( ( log ` A ) + gamma ) ) ) <_ ( 1 / A ) <-> ( ( log ` A ) x. ( abs ` ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( ( log ` A ) + gamma ) ) ) ) <_ ( ( log ` A ) x. ( 1 / A ) ) ) ) |
| 126 |
106 125
|
mpbid |
|- ( ph -> ( ( log ` A ) x. ( abs ` ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( ( log ` A ) + gamma ) ) ) ) <_ ( ( log ` A ) x. ( 1 / A ) ) ) |
| 127 |
46
|
rpcnd |
|- ( ( ph /\ m e. ( 1 ... ( |_ ` A ) ) ) -> m e. CC ) |
| 128 |
46
|
rpne0d |
|- ( ( ph /\ m e. ( 1 ... ( |_ ` A ) ) ) -> m =/= 0 ) |
| 129 |
64 127 128
|
divrecd |
|- ( ( ph /\ m e. ( 1 ... ( |_ ` A ) ) ) -> ( ( log ` A ) / m ) = ( ( log ` A ) x. ( 1 / m ) ) ) |
| 130 |
129
|
sumeq2dv |
|- ( ph -> sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` A ) / m ) = sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` A ) x. ( 1 / m ) ) ) |
| 131 |
107
|
recnd |
|- ( ( ph /\ m e. ( 1 ... ( |_ ` A ) ) ) -> ( 1 / m ) e. CC ) |
| 132 |
5 39 131
|
fsummulc2 |
|- ( ph -> ( ( log ` A ) x. sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) ) = sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` A ) x. ( 1 / m ) ) ) |
| 133 |
130 132
|
eqtr4d |
|- ( ph -> sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` A ) / m ) = ( ( log ` A ) x. sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) ) ) |
| 134 |
133
|
oveq1d |
|- ( ph -> ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` A ) / m ) - ( ( log ` A ) x. ( ( log ` A ) + gamma ) ) ) = ( ( ( log ` A ) x. sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) ) - ( ( log ` A ) x. ( ( log ` A ) + gamma ) ) ) ) |
| 135 |
5 131
|
fsumcl |
|- ( ph -> sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) e. CC ) |
| 136 |
39 135 42
|
subdid |
|- ( ph -> ( ( log ` A ) x. ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( ( log ` A ) + gamma ) ) ) = ( ( ( log ` A ) x. sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) ) - ( ( log ` A ) x. ( ( log ` A ) + gamma ) ) ) ) |
| 137 |
134 136
|
eqtr4d |
|- ( ph -> ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` A ) / m ) - ( ( log ` A ) x. ( ( log ` A ) + gamma ) ) ) = ( ( log ` A ) x. ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( ( log ` A ) + gamma ) ) ) ) |
| 138 |
137
|
fveq2d |
|- ( ph -> ( abs ` ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` A ) / m ) - ( ( log ` A ) x. ( ( log ` A ) + gamma ) ) ) ) = ( abs ` ( ( log ` A ) x. ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( ( log ` A ) + gamma ) ) ) ) ) |
| 139 |
135 42
|
subcld |
|- ( ph -> ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( ( log ` A ) + gamma ) ) e. CC ) |
| 140 |
39 139
|
absmuld |
|- ( ph -> ( abs ` ( ( log ` A ) x. ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( ( log ` A ) + gamma ) ) ) ) = ( ( abs ` ( log ` A ) ) x. ( abs ` ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( ( log ` A ) + gamma ) ) ) ) ) |
| 141 |
113 14 123
|
ltled |
|- ( ph -> 0 <_ ( log ` A ) ) |
| 142 |
14 141
|
absidd |
|- ( ph -> ( abs ` ( log ` A ) ) = ( log ` A ) ) |
| 143 |
142
|
oveq1d |
|- ( ph -> ( ( abs ` ( log ` A ) ) x. ( abs ` ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( ( log ` A ) + gamma ) ) ) ) = ( ( log ` A ) x. ( abs ` ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( ( log ` A ) + gamma ) ) ) ) ) |
| 144 |
138 140 143
|
3eqtrd |
|- ( ph -> ( abs ` ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` A ) / m ) - ( ( log ` A ) x. ( ( log ` A ) + gamma ) ) ) ) = ( ( log ` A ) x. ( abs ` ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( 1 / m ) - ( ( log ` A ) + gamma ) ) ) ) ) |
| 145 |
3
|
rpcnd |
|- ( ph -> A e. CC ) |
| 146 |
3
|
rpne0d |
|- ( ph -> A =/= 0 ) |
| 147 |
39 145 146
|
divrecd |
|- ( ph -> ( ( log ` A ) / A ) = ( ( log ` A ) x. ( 1 / A ) ) ) |
| 148 |
126 144 147
|
3brtr4d |
|- ( ph -> ( abs ` ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` A ) / m ) - ( ( log ` A ) x. ( ( log ` A ) + gamma ) ) ) ) <_ ( ( log ` A ) / A ) ) |
| 149 |
|
fveq2 |
|- ( i = m -> ( log ` i ) = ( log ` m ) ) |
| 150 |
|
id |
|- ( i = m -> i = m ) |
| 151 |
149 150
|
oveq12d |
|- ( i = m -> ( ( log ` i ) / i ) = ( ( log ` m ) / m ) ) |
| 152 |
151
|
cbvsumv |
|- sum_ i e. ( 1 ... ( |_ ` y ) ) ( ( log ` i ) / i ) = sum_ m e. ( 1 ... ( |_ ` y ) ) ( ( log ` m ) / m ) |
| 153 |
|
fveq2 |
|- ( y = A -> ( |_ ` y ) = ( |_ ` A ) ) |
| 154 |
153
|
oveq2d |
|- ( y = A -> ( 1 ... ( |_ ` y ) ) = ( 1 ... ( |_ ` A ) ) ) |
| 155 |
154
|
sumeq1d |
|- ( y = A -> sum_ m e. ( 1 ... ( |_ ` y ) ) ( ( log ` m ) / m ) = sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` m ) / m ) ) |
| 156 |
152 155
|
eqtrid |
|- ( y = A -> sum_ i e. ( 1 ... ( |_ ` y ) ) ( ( log ` i ) / i ) = sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` m ) / m ) ) |
| 157 |
|
fveq2 |
|- ( y = A -> ( log ` y ) = ( log ` A ) ) |
| 158 |
157
|
oveq1d |
|- ( y = A -> ( ( log ` y ) ^ 2 ) = ( ( log ` A ) ^ 2 ) ) |
| 159 |
158
|
oveq1d |
|- ( y = A -> ( ( ( log ` y ) ^ 2 ) / 2 ) = ( ( ( log ` A ) ^ 2 ) / 2 ) ) |
| 160 |
156 159
|
oveq12d |
|- ( y = A -> ( sum_ i e. ( 1 ... ( |_ ` y ) ) ( ( log ` i ) / i ) - ( ( ( log ` y ) ^ 2 ) / 2 ) ) = ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` m ) / m ) - ( ( ( log ` A ) ^ 2 ) / 2 ) ) ) |
| 161 |
|
ovex |
|- ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` m ) / m ) - ( ( ( log ` A ) ^ 2 ) / 2 ) ) e. _V |
| 162 |
160 1 161
|
fvmpt |
|- ( A e. RR+ -> ( F ` A ) = ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` m ) / m ) - ( ( ( log ` A ) ^ 2 ) / 2 ) ) ) |
| 163 |
3 162
|
syl |
|- ( ph -> ( F ` A ) = ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` m ) / m ) - ( ( ( log ` A ) ^ 2 ) / 2 ) ) ) |
| 164 |
163
|
oveq1d |
|- ( ph -> ( ( F ` A ) - L ) = ( ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` m ) / m ) - ( ( ( log ` A ) ^ 2 ) / 2 ) ) - L ) ) |
| 165 |
50 51 52
|
subsub4d |
|- ( ph -> ( ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` m ) / m ) - ( ( ( log ` A ) ^ 2 ) / 2 ) ) - L ) = ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` m ) / m ) - ( ( ( ( log ` A ) ^ 2 ) / 2 ) + L ) ) ) |
| 166 |
164 165
|
eqtrd |
|- ( ph -> ( ( F ` A ) - L ) = ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` m ) / m ) - ( ( ( ( log ` A ) ^ 2 ) / 2 ) + L ) ) ) |
| 167 |
166
|
fveq2d |
|- ( ph -> ( abs ` ( ( F ` A ) - L ) ) = ( abs ` ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` m ) / m ) - ( ( ( ( log ` A ) ^ 2 ) / 2 ) + L ) ) ) ) |
| 168 |
22
|
simp3i |
|- ( ( F ~~>r L /\ A e. RR+ /\ _e <_ A ) -> ( abs ` ( ( F ` A ) - L ) ) <_ ( ( log ` A ) / A ) ) |
| 169 |
2 3 4 168
|
syl3anc |
|- ( ph -> ( abs ` ( ( F ` A ) - L ) ) <_ ( ( log ` A ) / A ) ) |
| 170 |
167 169
|
eqbrtrrd |
|- ( ph -> ( abs ` ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` m ) / m ) - ( ( ( ( log ` A ) ^ 2 ) / 2 ) + L ) ) ) <_ ( ( log ` A ) / A ) ) |
| 171 |
45 55 58 58 148 170
|
le2addd |
|- ( ph -> ( ( abs ` ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` A ) / m ) - ( ( log ` A ) x. ( ( log ` A ) + gamma ) ) ) ) + ( abs ` ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` m ) / m ) - ( ( ( ( log ` A ) ^ 2 ) / 2 ) + L ) ) ) ) <_ ( ( ( log ` A ) / A ) + ( ( log ` A ) / A ) ) ) |
| 172 |
58
|
recnd |
|- ( ph -> ( ( log ` A ) / A ) e. CC ) |
| 173 |
172
|
2timesd |
|- ( ph -> ( 2 x. ( ( log ` A ) / A ) ) = ( ( ( log ` A ) / A ) + ( ( log ` A ) / A ) ) ) |
| 174 |
171 173
|
breqtrrd |
|- ( ph -> ( ( abs ` ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` A ) / m ) - ( ( log ` A ) x. ( ( log ` A ) + gamma ) ) ) ) + ( abs ` ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` m ) / m ) - ( ( ( ( log ` A ) ^ 2 ) / 2 ) + L ) ) ) ) <_ ( 2 x. ( ( log ` A ) / A ) ) ) |
| 175 |
34 56 60 104 174
|
letrd |
|- ( ph -> ( abs ` ( sum_ m e. ( 1 ... ( |_ ` A ) ) ( ( log ` ( A / m ) ) / m ) - ( ( ( ( log ` A ) ^ 2 ) / 2 ) + ( ( gamma x. ( log ` A ) ) - L ) ) ) ) <_ ( 2 x. ( ( log ` A ) / A ) ) ) |