| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rpssre |
|- RR+ C_ RR |
| 2 |
|
ax-1cn |
|- 1 e. CC |
| 3 |
|
o1const |
|- ( ( RR+ C_ RR /\ 1 e. CC ) -> ( x e. RR+ |-> 1 ) e. O(1) ) |
| 4 |
1 2 3
|
mp2an |
|- ( x e. RR+ |-> 1 ) e. O(1) |
| 5 |
|
1cnd |
|- ( ( T. /\ x e. RR+ ) -> 1 e. CC ) |
| 6 |
|
fzfid |
|- ( x e. RR+ -> ( 1 ... ( |_ ` x ) ) e. Fin ) |
| 7 |
|
elfznn |
|- ( n e. ( 1 ... ( |_ ` x ) ) -> n e. NN ) |
| 8 |
7
|
adantl |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. NN ) |
| 9 |
|
mucl |
|- ( n e. NN -> ( mmu ` n ) e. ZZ ) |
| 10 |
8 9
|
syl |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( mmu ` n ) e. ZZ ) |
| 11 |
10
|
zred |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( mmu ` n ) e. RR ) |
| 12 |
11 8
|
nndivred |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( mmu ` n ) / n ) e. RR ) |
| 13 |
7
|
nnrpd |
|- ( n e. ( 1 ... ( |_ ` x ) ) -> n e. RR+ ) |
| 14 |
|
rpdivcl |
|- ( ( x e. RR+ /\ n e. RR+ ) -> ( x / n ) e. RR+ ) |
| 15 |
13 14
|
sylan2 |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( x / n ) e. RR+ ) |
| 16 |
15
|
relogcld |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( log ` ( x / n ) ) e. RR ) |
| 17 |
12 16
|
remulcld |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) e. RR ) |
| 18 |
17
|
recnd |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) e. CC ) |
| 19 |
6 18
|
fsumcl |
|- ( x e. RR+ -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) e. CC ) |
| 20 |
19
|
adantl |
|- ( ( T. /\ x e. RR+ ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) e. CC ) |
| 21 |
|
mulogsumlem |
|- ( x e. RR+ |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( log ` ( x / n ) ) ) ) ) e. O(1) |
| 22 |
|
sumex |
|- sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( log ` ( x / n ) ) ) ) e. _V |
| 23 |
22
|
a1i |
|- ( ( T. /\ x e. RR+ ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( log ` ( x / n ) ) ) ) e. _V ) |
| 24 |
21
|
a1i |
|- ( T. -> ( x e. RR+ |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( log ` ( x / n ) ) ) ) ) e. O(1) ) |
| 25 |
23 24
|
o1mptrcl |
|- ( ( T. /\ x e. RR+ ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( log ` ( x / n ) ) ) ) e. CC ) |
| 26 |
5 20
|
subcld |
|- ( ( T. /\ x e. RR+ ) -> ( 1 - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) ) e. CC ) |
| 27 |
|
1red |
|- ( T. -> 1 e. RR ) |
| 28 |
|
fz1ssnn |
|- ( 1 ... ( |_ ` x ) ) C_ NN |
| 29 |
28
|
a1i |
|- ( ( x e. RR+ /\ 1 <_ x ) -> ( 1 ... ( |_ ` x ) ) C_ NN ) |
| 30 |
29
|
sselda |
|- ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. NN ) |
| 31 |
30 9
|
syl |
|- ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( mmu ` n ) e. ZZ ) |
| 32 |
31
|
zred |
|- ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( mmu ` n ) e. RR ) |
| 33 |
32 30
|
nndivred |
|- ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( mmu ` n ) / n ) e. RR ) |
| 34 |
33
|
recnd |
|- ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( mmu ` n ) / n ) e. CC ) |
| 35 |
|
fzfid |
|- ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 ... ( |_ ` ( x / n ) ) ) e. Fin ) |
| 36 |
|
elfznn |
|- ( m e. ( 1 ... ( |_ ` ( x / n ) ) ) -> m e. NN ) |
| 37 |
36
|
adantl |
|- ( ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> m e. NN ) |
| 38 |
37
|
nnrpd |
|- ( ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> m e. RR+ ) |
| 39 |
38
|
rpcnne0d |
|- ( ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( m e. CC /\ m =/= 0 ) ) |
| 40 |
|
reccl |
|- ( ( m e. CC /\ m =/= 0 ) -> ( 1 / m ) e. CC ) |
| 41 |
39 40
|
syl |
|- ( ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( 1 / m ) e. CC ) |
| 42 |
35 41
|
fsumcl |
|- ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) e. CC ) |
| 43 |
|
simpl |
|- ( ( x e. RR+ /\ 1 <_ x ) -> x e. RR+ ) |
| 44 |
43 13 14
|
syl2an |
|- ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( x / n ) e. RR+ ) |
| 45 |
44
|
relogcld |
|- ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( log ` ( x / n ) ) e. RR ) |
| 46 |
45
|
recnd |
|- ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( log ` ( x / n ) ) e. CC ) |
| 47 |
34 42 46
|
subdid |
|- ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( mmu ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( log ` ( x / n ) ) ) ) = ( ( ( ( mmu ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) ) - ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) ) ) |
| 48 |
47
|
sumeq2dv |
|- ( ( x e. RR+ /\ 1 <_ x ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( log ` ( x / n ) ) ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( ( mmu ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) ) - ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) ) ) |
| 49 |
|
fzfid |
|- ( ( x e. RR+ /\ 1 <_ x ) -> ( 1 ... ( |_ ` x ) ) e. Fin ) |
| 50 |
34 42
|
mulcld |
|- ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( mmu ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) ) e. CC ) |
| 51 |
18
|
adantlr |
|- ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) e. CC ) |
| 52 |
49 50 51
|
fsumsub |
|- ( ( x e. RR+ /\ 1 <_ x ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( ( mmu ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) ) - ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) ) ) |
| 53 |
|
oveq2 |
|- ( k = ( n x. m ) -> ( 1 / k ) = ( 1 / ( n x. m ) ) ) |
| 54 |
53
|
oveq2d |
|- ( k = ( n x. m ) -> ( ( mmu ` n ) x. ( 1 / k ) ) = ( ( mmu ` n ) x. ( 1 / ( n x. m ) ) ) ) |
| 55 |
|
rpre |
|- ( x e. RR+ -> x e. RR ) |
| 56 |
55
|
adantr |
|- ( ( x e. RR+ /\ 1 <_ x ) -> x e. RR ) |
| 57 |
|
ssrab2 |
|- { y e. NN | y || k } C_ NN |
| 58 |
|
simprr |
|- ( ( ( x e. RR+ /\ 1 <_ x ) /\ ( k e. ( 1 ... ( |_ ` x ) ) /\ n e. { y e. NN | y || k } ) ) -> n e. { y e. NN | y || k } ) |
| 59 |
57 58
|
sselid |
|- ( ( ( x e. RR+ /\ 1 <_ x ) /\ ( k e. ( 1 ... ( |_ ` x ) ) /\ n e. { y e. NN | y || k } ) ) -> n e. NN ) |
| 60 |
59 9
|
syl |
|- ( ( ( x e. RR+ /\ 1 <_ x ) /\ ( k e. ( 1 ... ( |_ ` x ) ) /\ n e. { y e. NN | y || k } ) ) -> ( mmu ` n ) e. ZZ ) |
| 61 |
60
|
zcnd |
|- ( ( ( x e. RR+ /\ 1 <_ x ) /\ ( k e. ( 1 ... ( |_ ` x ) ) /\ n e. { y e. NN | y || k } ) ) -> ( mmu ` n ) e. CC ) |
| 62 |
|
elfznn |
|- ( k e. ( 1 ... ( |_ ` x ) ) -> k e. NN ) |
| 63 |
62
|
adantl |
|- ( ( ( x e. RR+ /\ 1 <_ x ) /\ k e. ( 1 ... ( |_ ` x ) ) ) -> k e. NN ) |
| 64 |
63
|
nnrecred |
|- ( ( ( x e. RR+ /\ 1 <_ x ) /\ k e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 / k ) e. RR ) |
| 65 |
64
|
recnd |
|- ( ( ( x e. RR+ /\ 1 <_ x ) /\ k e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 / k ) e. CC ) |
| 66 |
65
|
adantrr |
|- ( ( ( x e. RR+ /\ 1 <_ x ) /\ ( k e. ( 1 ... ( |_ ` x ) ) /\ n e. { y e. NN | y || k } ) ) -> ( 1 / k ) e. CC ) |
| 67 |
61 66
|
mulcld |
|- ( ( ( x e. RR+ /\ 1 <_ x ) /\ ( k e. ( 1 ... ( |_ ` x ) ) /\ n e. { y e. NN | y || k } ) ) -> ( ( mmu ` n ) x. ( 1 / k ) ) e. CC ) |
| 68 |
54 56 67
|
dvdsflsumcom |
|- ( ( x e. RR+ /\ 1 <_ x ) -> sum_ k e. ( 1 ... ( |_ ` x ) ) sum_ n e. { y e. NN | y || k } ( ( mmu ` n ) x. ( 1 / k ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( mmu ` n ) x. ( 1 / ( n x. m ) ) ) ) |
| 69 |
|
oveq2 |
|- ( k = 1 -> ( 1 / k ) = ( 1 / 1 ) ) |
| 70 |
|
1div1e1 |
|- ( 1 / 1 ) = 1 |
| 71 |
69 70
|
eqtrdi |
|- ( k = 1 -> ( 1 / k ) = 1 ) |
| 72 |
|
flge1nn |
|- ( ( x e. RR /\ 1 <_ x ) -> ( |_ ` x ) e. NN ) |
| 73 |
55 72
|
sylan |
|- ( ( x e. RR+ /\ 1 <_ x ) -> ( |_ ` x ) e. NN ) |
| 74 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 75 |
73 74
|
eleqtrdi |
|- ( ( x e. RR+ /\ 1 <_ x ) -> ( |_ ` x ) e. ( ZZ>= ` 1 ) ) |
| 76 |
|
eluzfz1 |
|- ( ( |_ ` x ) e. ( ZZ>= ` 1 ) -> 1 e. ( 1 ... ( |_ ` x ) ) ) |
| 77 |
75 76
|
syl |
|- ( ( x e. RR+ /\ 1 <_ x ) -> 1 e. ( 1 ... ( |_ ` x ) ) ) |
| 78 |
71 49 29 77 65
|
musumsum |
|- ( ( x e. RR+ /\ 1 <_ x ) -> sum_ k e. ( 1 ... ( |_ ` x ) ) sum_ n e. { y e. NN | y || k } ( ( mmu ` n ) x. ( 1 / k ) ) = 1 ) |
| 79 |
31
|
zcnd |
|- ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( mmu ` n ) e. CC ) |
| 80 |
79
|
adantr |
|- ( ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( mmu ` n ) e. CC ) |
| 81 |
30
|
adantr |
|- ( ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> n e. NN ) |
| 82 |
81
|
nnrpd |
|- ( ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> n e. RR+ ) |
| 83 |
82
|
rpcnne0d |
|- ( ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( n e. CC /\ n =/= 0 ) ) |
| 84 |
|
divdiv1 |
|- ( ( ( mmu ` n ) e. CC /\ ( n e. CC /\ n =/= 0 ) /\ ( m e. CC /\ m =/= 0 ) ) -> ( ( ( mmu ` n ) / n ) / m ) = ( ( mmu ` n ) / ( n x. m ) ) ) |
| 85 |
80 83 39 84
|
syl3anc |
|- ( ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( ( ( mmu ` n ) / n ) / m ) = ( ( mmu ` n ) / ( n x. m ) ) ) |
| 86 |
34
|
adantr |
|- ( ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( ( mmu ` n ) / n ) e. CC ) |
| 87 |
37
|
nncnd |
|- ( ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> m e. CC ) |
| 88 |
37
|
nnne0d |
|- ( ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> m =/= 0 ) |
| 89 |
86 87 88
|
divrecd |
|- ( ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( ( ( mmu ` n ) / n ) / m ) = ( ( ( mmu ` n ) / n ) x. ( 1 / m ) ) ) |
| 90 |
|
nnmulcl |
|- ( ( n e. NN /\ m e. NN ) -> ( n x. m ) e. NN ) |
| 91 |
30 36 90
|
syl2an |
|- ( ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( n x. m ) e. NN ) |
| 92 |
91
|
nncnd |
|- ( ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( n x. m ) e. CC ) |
| 93 |
91
|
nnne0d |
|- ( ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( n x. m ) =/= 0 ) |
| 94 |
80 92 93
|
divrecd |
|- ( ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( ( mmu ` n ) / ( n x. m ) ) = ( ( mmu ` n ) x. ( 1 / ( n x. m ) ) ) ) |
| 95 |
85 89 94
|
3eqtr3rd |
|- ( ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( ( mmu ` n ) x. ( 1 / ( n x. m ) ) ) = ( ( ( mmu ` n ) / n ) x. ( 1 / m ) ) ) |
| 96 |
95
|
sumeq2dv |
|- ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( mmu ` n ) x. ( 1 / ( n x. m ) ) ) = sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( ( mmu ` n ) / n ) x. ( 1 / m ) ) ) |
| 97 |
35 34 41
|
fsummulc2 |
|- ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( mmu ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) ) = sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( ( mmu ` n ) / n ) x. ( 1 / m ) ) ) |
| 98 |
96 97
|
eqtr4d |
|- ( ( ( x e. RR+ /\ 1 <_ x ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( mmu ` n ) x. ( 1 / ( n x. m ) ) ) = ( ( ( mmu ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) ) ) |
| 99 |
98
|
sumeq2dv |
|- ( ( x e. RR+ /\ 1 <_ x ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( mmu ` n ) x. ( 1 / ( n x. m ) ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) ) ) |
| 100 |
68 78 99
|
3eqtr3rd |
|- ( ( x e. RR+ /\ 1 <_ x ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) ) = 1 ) |
| 101 |
100
|
oveq1d |
|- ( ( x e. RR+ /\ 1 <_ x ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) ) = ( 1 - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) ) ) |
| 102 |
48 52 101
|
3eqtrd |
|- ( ( x e. RR+ /\ 1 <_ x ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( log ` ( x / n ) ) ) ) = ( 1 - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) ) ) |
| 103 |
102
|
adantl |
|- ( ( T. /\ ( x e. RR+ /\ 1 <_ x ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( log ` ( x / n ) ) ) ) = ( 1 - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) ) ) |
| 104 |
25 26 27 103
|
o1eq |
|- ( T. -> ( ( x e. RR+ |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( log ` ( x / n ) ) ) ) ) e. O(1) <-> ( x e. RR+ |-> ( 1 - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) ) ) e. O(1) ) ) |
| 105 |
21 104
|
mpbii |
|- ( T. -> ( x e. RR+ |-> ( 1 - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) ) ) e. O(1) ) |
| 106 |
5 20 105
|
o1dif |
|- ( T. -> ( ( x e. RR+ |-> 1 ) e. O(1) <-> ( x e. RR+ |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) ) e. O(1) ) ) |
| 107 |
4 106
|
mpbii |
|- ( T. -> ( x e. RR+ |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) ) e. O(1) ) |
| 108 |
107
|
mptru |
|- ( x e. RR+ |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( log ` ( x / n ) ) ) ) e. O(1) |