Step |
Hyp |
Ref |
Expression |
1 |
|
fzfid |
|- ( x e. RR+ -> ( 1 ... ( |_ ` x ) ) e. Fin ) |
2 |
|
elfznn |
|- ( n e. ( 1 ... ( |_ ` x ) ) -> n e. NN ) |
3 |
2
|
adantl |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. NN ) |
4 |
|
mucl |
|- ( n e. NN -> ( mmu ` n ) e. ZZ ) |
5 |
3 4
|
syl |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( mmu ` n ) e. ZZ ) |
6 |
5
|
zred |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( mmu ` n ) e. RR ) |
7 |
6 3
|
nndivred |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( mmu ` n ) / n ) e. RR ) |
8 |
7
|
recnd |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( mmu ` n ) / n ) e. CC ) |
9 |
1 8
|
fsumcl |
|- ( x e. RR+ -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) / n ) e. CC ) |
10 |
9
|
adantl |
|- ( ( T. /\ x e. RR+ ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) / n ) e. CC ) |
11 |
|
emre |
|- gamma e. RR |
12 |
11
|
recni |
|- gamma e. CC |
13 |
12
|
a1i |
|- ( ( T. /\ x e. RR+ ) -> gamma e. CC ) |
14 |
|
mudivsum |
|- ( x e. RR+ |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) / n ) ) e. O(1) |
15 |
14
|
a1i |
|- ( T. -> ( x e. RR+ |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) / n ) ) e. O(1) ) |
16 |
|
rpssre |
|- RR+ C_ RR |
17 |
|
o1const |
|- ( ( RR+ C_ RR /\ gamma e. CC ) -> ( x e. RR+ |-> gamma ) e. O(1) ) |
18 |
16 12 17
|
mp2an |
|- ( x e. RR+ |-> gamma ) e. O(1) |
19 |
18
|
a1i |
|- ( T. -> ( x e. RR+ |-> gamma ) e. O(1) ) |
20 |
10 13 15 19
|
o1mul2 |
|- ( T. -> ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) / n ) x. gamma ) ) e. O(1) ) |
21 |
|
fzfid |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 ... ( |_ ` ( x / n ) ) ) e. Fin ) |
22 |
|
elfznn |
|- ( m e. ( 1 ... ( |_ ` ( x / n ) ) ) -> m e. NN ) |
23 |
22
|
adantl |
|- ( ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> m e. NN ) |
24 |
23
|
nnrecred |
|- ( ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( 1 / m ) e. RR ) |
25 |
21 24
|
fsumrecl |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) e. RR ) |
26 |
2
|
nnrpd |
|- ( n e. ( 1 ... ( |_ ` x ) ) -> n e. RR+ ) |
27 |
|
rpdivcl |
|- ( ( x e. RR+ /\ n e. RR+ ) -> ( x / n ) e. RR+ ) |
28 |
26 27
|
sylan2 |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( x / n ) e. RR+ ) |
29 |
28
|
relogcld |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( log ` ( x / n ) ) e. RR ) |
30 |
25 29
|
resubcld |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( log ` ( x / n ) ) ) e. RR ) |
31 |
7 30
|
remulcld |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( mmu ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( log ` ( x / n ) ) ) ) e. RR ) |
32 |
1 31
|
fsumrecl |
|- ( x e. RR+ -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( log ` ( x / n ) ) ) ) e. RR ) |
33 |
32
|
recnd |
|- ( x e. RR+ -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( log ` ( x / n ) ) ) ) e. CC ) |
34 |
33
|
adantl |
|- ( ( T. /\ x e. RR+ ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( log ` ( x / n ) ) ) ) e. CC ) |
35 |
|
mulcl |
|- ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) / n ) e. CC /\ gamma e. CC ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) / n ) x. gamma ) e. CC ) |
36 |
9 12 35
|
sylancl |
|- ( x e. RR+ -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) / n ) x. gamma ) e. CC ) |
37 |
36
|
adantl |
|- ( ( T. /\ x e. RR+ ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) / n ) x. gamma ) e. CC ) |
38 |
|
nnrecre |
|- ( m e. NN -> ( 1 / m ) e. RR ) |
39 |
38
|
recnd |
|- ( m e. NN -> ( 1 / m ) e. CC ) |
40 |
23 39
|
syl |
|- ( ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( 1 / m ) e. CC ) |
41 |
21 40
|
fsumcl |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) e. CC ) |
42 |
29
|
recnd |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( log ` ( x / n ) ) e. CC ) |
43 |
41 42
|
subcld |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( log ` ( x / n ) ) ) e. CC ) |
44 |
8 43
|
mulcld |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( mmu ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( log ` ( x / n ) ) ) ) e. CC ) |
45 |
|
mulcl |
|- ( ( ( ( mmu ` n ) / n ) e. CC /\ gamma e. CC ) -> ( ( ( mmu ` n ) / n ) x. gamma ) e. CC ) |
46 |
8 12 45
|
sylancl |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( mmu ` n ) / n ) x. gamma ) e. CC ) |
47 |
1 44 46
|
fsumsub |
|- ( x e. RR+ -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( ( mmu ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( log ` ( x / n ) ) ) ) - ( ( ( mmu ` n ) / n ) x. gamma ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( log ` ( x / n ) ) ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. gamma ) ) ) |
48 |
12
|
a1i |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> gamma e. CC ) |
49 |
41 42 48
|
subsub4d |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( log ` ( x / n ) ) ) - gamma ) = ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( ( log ` ( x / n ) ) + gamma ) ) ) |
50 |
49
|
oveq2d |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( mmu ` n ) / n ) x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( log ` ( x / n ) ) ) - gamma ) ) = ( ( ( mmu ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( ( log ` ( x / n ) ) + gamma ) ) ) ) |
51 |
8 43 48
|
subdid |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( mmu ` n ) / n ) x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( log ` ( x / n ) ) ) - gamma ) ) = ( ( ( ( mmu ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( log ` ( x / n ) ) ) ) - ( ( ( mmu ` n ) / n ) x. gamma ) ) ) |
52 |
50 51
|
eqtr3d |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( mmu ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( ( log ` ( x / n ) ) + gamma ) ) ) = ( ( ( ( mmu ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( log ` ( x / n ) ) ) ) - ( ( ( mmu ` n ) / n ) x. gamma ) ) ) |
53 |
52
|
sumeq2dv |
|- ( x e. RR+ -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( ( log ` ( x / n ) ) + gamma ) ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( ( mmu ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( log ` ( x / n ) ) ) ) - ( ( ( mmu ` n ) / n ) x. gamma ) ) ) |
54 |
12
|
a1i |
|- ( x e. RR+ -> gamma e. CC ) |
55 |
1 54 8
|
fsummulc1 |
|- ( x e. RR+ -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) / n ) x. gamma ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. gamma ) ) |
56 |
55
|
oveq2d |
|- ( x e. RR+ -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( log ` ( x / n ) ) ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) / n ) x. gamma ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( log ` ( x / n ) ) ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. gamma ) ) ) |
57 |
47 53 56
|
3eqtr4d |
|- ( x e. RR+ -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( ( log ` ( x / n ) ) + gamma ) ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( log ` ( x / n ) ) ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) / n ) x. gamma ) ) ) |
58 |
57
|
mpteq2ia |
|- ( x e. RR+ |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( ( log ` ( x / n ) ) + gamma ) ) ) ) = ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( log ` ( x / n ) ) ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) / n ) x. gamma ) ) ) |
59 |
16
|
a1i |
|- ( T. -> RR+ C_ RR ) |
60 |
42 48
|
addcld |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( log ` ( x / n ) ) + gamma ) e. CC ) |
61 |
41 60
|
subcld |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( ( log ` ( x / n ) ) + gamma ) ) e. CC ) |
62 |
8 61
|
mulcld |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( mmu ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( ( log ` ( x / n ) ) + gamma ) ) ) e. CC ) |
63 |
1 62
|
fsumcl |
|- ( x e. RR+ -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( ( log ` ( x / n ) ) + gamma ) ) ) e. CC ) |
64 |
63
|
adantl |
|- ( ( T. /\ x e. RR+ ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( ( log ` ( x / n ) ) + gamma ) ) ) e. CC ) |
65 |
|
1red |
|- ( T. -> 1 e. RR ) |
66 |
63
|
abscld |
|- ( x e. RR+ -> ( abs ` sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( ( log ` ( x / n ) ) + gamma ) ) ) ) e. RR ) |
67 |
62
|
abscld |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( ( mmu ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( ( log ` ( x / n ) ) + gamma ) ) ) ) e. RR ) |
68 |
1 67
|
fsumrecl |
|- ( x e. RR+ -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( ( ( mmu ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( ( log ` ( x / n ) ) + gamma ) ) ) ) e. RR ) |
69 |
|
1red |
|- ( x e. RR+ -> 1 e. RR ) |
70 |
1 62
|
fsumabs |
|- ( x e. RR+ -> ( abs ` sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( ( log ` ( x / n ) ) + gamma ) ) ) ) <_ sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( ( ( mmu ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( ( log ` ( x / n ) ) + gamma ) ) ) ) ) |
71 |
|
rprege0 |
|- ( x e. RR+ -> ( x e. RR /\ 0 <_ x ) ) |
72 |
|
flge0nn0 |
|- ( ( x e. RR /\ 0 <_ x ) -> ( |_ ` x ) e. NN0 ) |
73 |
71 72
|
syl |
|- ( x e. RR+ -> ( |_ ` x ) e. NN0 ) |
74 |
73
|
nn0red |
|- ( x e. RR+ -> ( |_ ` x ) e. RR ) |
75 |
|
rerpdivcl |
|- ( ( ( |_ ` x ) e. RR /\ x e. RR+ ) -> ( ( |_ ` x ) / x ) e. RR ) |
76 |
74 75
|
mpancom |
|- ( x e. RR+ -> ( ( |_ ` x ) / x ) e. RR ) |
77 |
|
rpreccl |
|- ( x e. RR+ -> ( 1 / x ) e. RR+ ) |
78 |
77
|
adantr |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 / x ) e. RR+ ) |
79 |
78
|
rpred |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 / x ) e. RR ) |
80 |
8
|
abscld |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( mmu ` n ) / n ) ) e. RR ) |
81 |
3
|
nnrecred |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 / n ) e. RR ) |
82 |
61
|
abscld |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( ( log ` ( x / n ) ) + gamma ) ) ) e. RR ) |
83 |
|
id |
|- ( x e. RR+ -> x e. RR+ ) |
84 |
|
rpdivcl |
|- ( ( n e. RR+ /\ x e. RR+ ) -> ( n / x ) e. RR+ ) |
85 |
26 83 84
|
syl2anr |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( n / x ) e. RR+ ) |
86 |
85
|
rpred |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( n / x ) e. RR ) |
87 |
8
|
absge0d |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 0 <_ ( abs ` ( ( mmu ` n ) / n ) ) ) |
88 |
61
|
absge0d |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 0 <_ ( abs ` ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( ( log ` ( x / n ) ) + gamma ) ) ) ) |
89 |
6
|
recnd |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( mmu ` n ) e. CC ) |
90 |
3
|
nncnd |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. CC ) |
91 |
3
|
nnne0d |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n =/= 0 ) |
92 |
89 90 91
|
absdivd |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( mmu ` n ) / n ) ) = ( ( abs ` ( mmu ` n ) ) / ( abs ` n ) ) ) |
93 |
3
|
nnrpd |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. RR+ ) |
94 |
|
rprege0 |
|- ( n e. RR+ -> ( n e. RR /\ 0 <_ n ) ) |
95 |
93 94
|
syl |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( n e. RR /\ 0 <_ n ) ) |
96 |
|
absid |
|- ( ( n e. RR /\ 0 <_ n ) -> ( abs ` n ) = n ) |
97 |
95 96
|
syl |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` n ) = n ) |
98 |
97
|
oveq2d |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( abs ` ( mmu ` n ) ) / ( abs ` n ) ) = ( ( abs ` ( mmu ` n ) ) / n ) ) |
99 |
92 98
|
eqtrd |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( mmu ` n ) / n ) ) = ( ( abs ` ( mmu ` n ) ) / n ) ) |
100 |
89
|
abscld |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( mmu ` n ) ) e. RR ) |
101 |
|
1red |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 1 e. RR ) |
102 |
|
mule1 |
|- ( n e. NN -> ( abs ` ( mmu ` n ) ) <_ 1 ) |
103 |
3 102
|
syl |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( mmu ` n ) ) <_ 1 ) |
104 |
100 101 93 103
|
lediv1dd |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( abs ` ( mmu ` n ) ) / n ) <_ ( 1 / n ) ) |
105 |
99 104
|
eqbrtrd |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( mmu ` n ) / n ) ) <_ ( 1 / n ) ) |
106 |
|
harmonicbnd4 |
|- ( ( x / n ) e. RR+ -> ( abs ` ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( ( log ` ( x / n ) ) + gamma ) ) ) <_ ( 1 / ( x / n ) ) ) |
107 |
28 106
|
syl |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( ( log ` ( x / n ) ) + gamma ) ) ) <_ ( 1 / ( x / n ) ) ) |
108 |
|
rpcnne0 |
|- ( x e. RR+ -> ( x e. CC /\ x =/= 0 ) ) |
109 |
108
|
adantr |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( x e. CC /\ x =/= 0 ) ) |
110 |
|
rpcnne0 |
|- ( n e. RR+ -> ( n e. CC /\ n =/= 0 ) ) |
111 |
93 110
|
syl |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( n e. CC /\ n =/= 0 ) ) |
112 |
|
recdiv |
|- ( ( ( x e. CC /\ x =/= 0 ) /\ ( n e. CC /\ n =/= 0 ) ) -> ( 1 / ( x / n ) ) = ( n / x ) ) |
113 |
109 111 112
|
syl2anc |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 / ( x / n ) ) = ( n / x ) ) |
114 |
107 113
|
breqtrd |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( ( log ` ( x / n ) ) + gamma ) ) ) <_ ( n / x ) ) |
115 |
80 81 82 86 87 88 105 114
|
lemul12ad |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( abs ` ( ( mmu ` n ) / n ) ) x. ( abs ` ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( ( log ` ( x / n ) ) + gamma ) ) ) ) <_ ( ( 1 / n ) x. ( n / x ) ) ) |
116 |
8 61
|
absmuld |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( ( mmu ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( ( log ` ( x / n ) ) + gamma ) ) ) ) = ( ( abs ` ( ( mmu ` n ) / n ) ) x. ( abs ` ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( ( log ` ( x / n ) ) + gamma ) ) ) ) ) |
117 |
|
1cnd |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 1 e. CC ) |
118 |
|
dmdcan |
|- ( ( ( n e. CC /\ n =/= 0 ) /\ ( x e. CC /\ x =/= 0 ) /\ 1 e. CC ) -> ( ( n / x ) x. ( 1 / n ) ) = ( 1 / x ) ) |
119 |
111 109 117 118
|
syl3anc |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( n / x ) x. ( 1 / n ) ) = ( 1 / x ) ) |
120 |
85
|
rpcnd |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( n / x ) e. CC ) |
121 |
81
|
recnd |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 / n ) e. CC ) |
122 |
120 121
|
mulcomd |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( n / x ) x. ( 1 / n ) ) = ( ( 1 / n ) x. ( n / x ) ) ) |
123 |
119 122
|
eqtr3d |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 / x ) = ( ( 1 / n ) x. ( n / x ) ) ) |
124 |
115 116 123
|
3brtr4d |
|- ( ( x e. RR+ /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( ( mmu ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( ( log ` ( x / n ) ) + gamma ) ) ) ) <_ ( 1 / x ) ) |
125 |
1 67 79 124
|
fsumle |
|- ( x e. RR+ -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( ( ( mmu ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( ( log ` ( x / n ) ) + gamma ) ) ) ) <_ sum_ n e. ( 1 ... ( |_ ` x ) ) ( 1 / x ) ) |
126 |
|
hashfz1 |
|- ( ( |_ ` x ) e. NN0 -> ( # ` ( 1 ... ( |_ ` x ) ) ) = ( |_ ` x ) ) |
127 |
73 126
|
syl |
|- ( x e. RR+ -> ( # ` ( 1 ... ( |_ ` x ) ) ) = ( |_ ` x ) ) |
128 |
127
|
oveq1d |
|- ( x e. RR+ -> ( ( # ` ( 1 ... ( |_ ` x ) ) ) x. ( 1 / x ) ) = ( ( |_ ` x ) x. ( 1 / x ) ) ) |
129 |
77
|
rpcnd |
|- ( x e. RR+ -> ( 1 / x ) e. CC ) |
130 |
|
fsumconst |
|- ( ( ( 1 ... ( |_ ` x ) ) e. Fin /\ ( 1 / x ) e. CC ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( 1 / x ) = ( ( # ` ( 1 ... ( |_ ` x ) ) ) x. ( 1 / x ) ) ) |
131 |
1 129 130
|
syl2anc |
|- ( x e. RR+ -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( 1 / x ) = ( ( # ` ( 1 ... ( |_ ` x ) ) ) x. ( 1 / x ) ) ) |
132 |
73
|
nn0cnd |
|- ( x e. RR+ -> ( |_ ` x ) e. CC ) |
133 |
|
rpcn |
|- ( x e. RR+ -> x e. CC ) |
134 |
|
rpne0 |
|- ( x e. RR+ -> x =/= 0 ) |
135 |
132 133 134
|
divrecd |
|- ( x e. RR+ -> ( ( |_ ` x ) / x ) = ( ( |_ ` x ) x. ( 1 / x ) ) ) |
136 |
128 131 135
|
3eqtr4d |
|- ( x e. RR+ -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( 1 / x ) = ( ( |_ ` x ) / x ) ) |
137 |
125 136
|
breqtrd |
|- ( x e. RR+ -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( ( ( mmu ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( ( log ` ( x / n ) ) + gamma ) ) ) ) <_ ( ( |_ ` x ) / x ) ) |
138 |
|
rpre |
|- ( x e. RR+ -> x e. RR ) |
139 |
|
flle |
|- ( x e. RR -> ( |_ ` x ) <_ x ) |
140 |
138 139
|
syl |
|- ( x e. RR+ -> ( |_ ` x ) <_ x ) |
141 |
133
|
mulid1d |
|- ( x e. RR+ -> ( x x. 1 ) = x ) |
142 |
140 141
|
breqtrrd |
|- ( x e. RR+ -> ( |_ ` x ) <_ ( x x. 1 ) ) |
143 |
|
reflcl |
|- ( x e. RR -> ( |_ ` x ) e. RR ) |
144 |
138 143
|
syl |
|- ( x e. RR+ -> ( |_ ` x ) e. RR ) |
145 |
|
rpregt0 |
|- ( x e. RR+ -> ( x e. RR /\ 0 < x ) ) |
146 |
|
ledivmul |
|- ( ( ( |_ ` x ) e. RR /\ 1 e. RR /\ ( x e. RR /\ 0 < x ) ) -> ( ( ( |_ ` x ) / x ) <_ 1 <-> ( |_ ` x ) <_ ( x x. 1 ) ) ) |
147 |
144 69 145 146
|
syl3anc |
|- ( x e. RR+ -> ( ( ( |_ ` x ) / x ) <_ 1 <-> ( |_ ` x ) <_ ( x x. 1 ) ) ) |
148 |
142 147
|
mpbird |
|- ( x e. RR+ -> ( ( |_ ` x ) / x ) <_ 1 ) |
149 |
68 76 69 137 148
|
letrd |
|- ( x e. RR+ -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( ( ( mmu ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( ( log ` ( x / n ) ) + gamma ) ) ) ) <_ 1 ) |
150 |
66 68 69 70 149
|
letrd |
|- ( x e. RR+ -> ( abs ` sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( ( log ` ( x / n ) ) + gamma ) ) ) ) <_ 1 ) |
151 |
150
|
ad2antrl |
|- ( ( T. /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( abs ` sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( ( log ` ( x / n ) ) + gamma ) ) ) ) <_ 1 ) |
152 |
59 64 65 65 151
|
elo1d |
|- ( T. -> ( x e. RR+ |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( ( log ` ( x / n ) ) + gamma ) ) ) ) e. O(1) ) |
153 |
58 152
|
eqeltrrid |
|- ( T. -> ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( log ` ( x / n ) ) ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) / n ) x. gamma ) ) ) e. O(1) ) |
154 |
34 37 153
|
o1dif |
|- ( T. -> ( ( x e. RR+ |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( log ` ( x / n ) ) ) ) ) e. O(1) <-> ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( mmu ` n ) / n ) x. gamma ) ) e. O(1) ) ) |
155 |
20 154
|
mpbird |
|- ( T. -> ( x e. RR+ |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( log ` ( x / n ) ) ) ) ) e. O(1) ) |
156 |
155
|
mptru |
|- ( x e. RR+ |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( mmu ` n ) / n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( 1 / m ) - ( log ` ( x / n ) ) ) ) ) e. O(1) |