| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rereb |
|- ( A e. CC -> ( A e. RR <-> ( Re ` A ) = A ) ) |
| 2 |
1
|
3ad2ant1 |
|- ( ( A e. CC /\ B e. RR /\ B =/= 0 ) -> ( A e. RR <-> ( Re ` A ) = A ) ) |
| 3 |
|
recl |
|- ( A e. CC -> ( Re ` A ) e. RR ) |
| 4 |
3
|
recnd |
|- ( A e. CC -> ( Re ` A ) e. CC ) |
| 5 |
4
|
3ad2ant1 |
|- ( ( A e. CC /\ B e. RR /\ B =/= 0 ) -> ( Re ` A ) e. CC ) |
| 6 |
|
simp1 |
|- ( ( A e. CC /\ B e. RR /\ B =/= 0 ) -> A e. CC ) |
| 7 |
|
recn |
|- ( B e. RR -> B e. CC ) |
| 8 |
7
|
anim1i |
|- ( ( B e. RR /\ B =/= 0 ) -> ( B e. CC /\ B =/= 0 ) ) |
| 9 |
8
|
3adant1 |
|- ( ( A e. CC /\ B e. RR /\ B =/= 0 ) -> ( B e. CC /\ B =/= 0 ) ) |
| 10 |
|
mulcan |
|- ( ( ( Re ` A ) e. CC /\ A e. CC /\ ( B e. CC /\ B =/= 0 ) ) -> ( ( B x. ( Re ` A ) ) = ( B x. A ) <-> ( Re ` A ) = A ) ) |
| 11 |
5 6 9 10
|
syl3anc |
|- ( ( A e. CC /\ B e. RR /\ B =/= 0 ) -> ( ( B x. ( Re ` A ) ) = ( B x. A ) <-> ( Re ` A ) = A ) ) |
| 12 |
7
|
adantr |
|- ( ( B e. RR /\ A e. CC ) -> B e. CC ) |
| 13 |
4
|
adantl |
|- ( ( B e. RR /\ A e. CC ) -> ( Re ` A ) e. CC ) |
| 14 |
|
ax-icn |
|- _i e. CC |
| 15 |
|
imcl |
|- ( A e. CC -> ( Im ` A ) e. RR ) |
| 16 |
15
|
recnd |
|- ( A e. CC -> ( Im ` A ) e. CC ) |
| 17 |
|
mulcl |
|- ( ( _i e. CC /\ ( Im ` A ) e. CC ) -> ( _i x. ( Im ` A ) ) e. CC ) |
| 18 |
14 16 17
|
sylancr |
|- ( A e. CC -> ( _i x. ( Im ` A ) ) e. CC ) |
| 19 |
18
|
adantl |
|- ( ( B e. RR /\ A e. CC ) -> ( _i x. ( Im ` A ) ) e. CC ) |
| 20 |
12 13 19
|
adddid |
|- ( ( B e. RR /\ A e. CC ) -> ( B x. ( ( Re ` A ) + ( _i x. ( Im ` A ) ) ) ) = ( ( B x. ( Re ` A ) ) + ( B x. ( _i x. ( Im ` A ) ) ) ) ) |
| 21 |
|
replim |
|- ( A e. CC -> A = ( ( Re ` A ) + ( _i x. ( Im ` A ) ) ) ) |
| 22 |
21
|
adantl |
|- ( ( B e. RR /\ A e. CC ) -> A = ( ( Re ` A ) + ( _i x. ( Im ` A ) ) ) ) |
| 23 |
22
|
oveq2d |
|- ( ( B e. RR /\ A e. CC ) -> ( B x. A ) = ( B x. ( ( Re ` A ) + ( _i x. ( Im ` A ) ) ) ) ) |
| 24 |
|
mul12 |
|- ( ( _i e. CC /\ B e. CC /\ ( Im ` A ) e. CC ) -> ( _i x. ( B x. ( Im ` A ) ) ) = ( B x. ( _i x. ( Im ` A ) ) ) ) |
| 25 |
14 7 16 24
|
mp3an3an |
|- ( ( B e. RR /\ A e. CC ) -> ( _i x. ( B x. ( Im ` A ) ) ) = ( B x. ( _i x. ( Im ` A ) ) ) ) |
| 26 |
25
|
oveq2d |
|- ( ( B e. RR /\ A e. CC ) -> ( ( B x. ( Re ` A ) ) + ( _i x. ( B x. ( Im ` A ) ) ) ) = ( ( B x. ( Re ` A ) ) + ( B x. ( _i x. ( Im ` A ) ) ) ) ) |
| 27 |
20 23 26
|
3eqtr4d |
|- ( ( B e. RR /\ A e. CC ) -> ( B x. A ) = ( ( B x. ( Re ` A ) ) + ( _i x. ( B x. ( Im ` A ) ) ) ) ) |
| 28 |
27
|
fveq2d |
|- ( ( B e. RR /\ A e. CC ) -> ( Re ` ( B x. A ) ) = ( Re ` ( ( B x. ( Re ` A ) ) + ( _i x. ( B x. ( Im ` A ) ) ) ) ) ) |
| 29 |
|
remulcl |
|- ( ( B e. RR /\ ( Re ` A ) e. RR ) -> ( B x. ( Re ` A ) ) e. RR ) |
| 30 |
3 29
|
sylan2 |
|- ( ( B e. RR /\ A e. CC ) -> ( B x. ( Re ` A ) ) e. RR ) |
| 31 |
|
remulcl |
|- ( ( B e. RR /\ ( Im ` A ) e. RR ) -> ( B x. ( Im ` A ) ) e. RR ) |
| 32 |
15 31
|
sylan2 |
|- ( ( B e. RR /\ A e. CC ) -> ( B x. ( Im ` A ) ) e. RR ) |
| 33 |
|
crre |
|- ( ( ( B x. ( Re ` A ) ) e. RR /\ ( B x. ( Im ` A ) ) e. RR ) -> ( Re ` ( ( B x. ( Re ` A ) ) + ( _i x. ( B x. ( Im ` A ) ) ) ) ) = ( B x. ( Re ` A ) ) ) |
| 34 |
30 32 33
|
syl2anc |
|- ( ( B e. RR /\ A e. CC ) -> ( Re ` ( ( B x. ( Re ` A ) ) + ( _i x. ( B x. ( Im ` A ) ) ) ) ) = ( B x. ( Re ` A ) ) ) |
| 35 |
28 34
|
eqtr2d |
|- ( ( B e. RR /\ A e. CC ) -> ( B x. ( Re ` A ) ) = ( Re ` ( B x. A ) ) ) |
| 36 |
35
|
eqeq1d |
|- ( ( B e. RR /\ A e. CC ) -> ( ( B x. ( Re ` A ) ) = ( B x. A ) <-> ( Re ` ( B x. A ) ) = ( B x. A ) ) ) |
| 37 |
|
mulcl |
|- ( ( B e. CC /\ A e. CC ) -> ( B x. A ) e. CC ) |
| 38 |
7 37
|
sylan |
|- ( ( B e. RR /\ A e. CC ) -> ( B x. A ) e. CC ) |
| 39 |
|
rereb |
|- ( ( B x. A ) e. CC -> ( ( B x. A ) e. RR <-> ( Re ` ( B x. A ) ) = ( B x. A ) ) ) |
| 40 |
38 39
|
syl |
|- ( ( B e. RR /\ A e. CC ) -> ( ( B x. A ) e. RR <-> ( Re ` ( B x. A ) ) = ( B x. A ) ) ) |
| 41 |
36 40
|
bitr4d |
|- ( ( B e. RR /\ A e. CC ) -> ( ( B x. ( Re ` A ) ) = ( B x. A ) <-> ( B x. A ) e. RR ) ) |
| 42 |
41
|
ancoms |
|- ( ( A e. CC /\ B e. RR ) -> ( ( B x. ( Re ` A ) ) = ( B x. A ) <-> ( B x. A ) e. RR ) ) |
| 43 |
42
|
3adant3 |
|- ( ( A e. CC /\ B e. RR /\ B =/= 0 ) -> ( ( B x. ( Re ` A ) ) = ( B x. A ) <-> ( B x. A ) e. RR ) ) |
| 44 |
2 11 43
|
3bitr2d |
|- ( ( A e. CC /\ B e. RR /\ B =/= 0 ) -> ( A e. RR <-> ( B x. A ) e. RR ) ) |