| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnre |
|- ( A e. CC -> E. x e. RR E. y e. RR A = ( x + ( _i x. y ) ) ) |
| 2 |
|
recn |
|- ( x e. RR -> x e. CC ) |
| 3 |
|
ax-icn |
|- _i e. CC |
| 4 |
|
recn |
|- ( y e. RR -> y e. CC ) |
| 5 |
|
mulcl |
|- ( ( _i e. CC /\ y e. CC ) -> ( _i x. y ) e. CC ) |
| 6 |
3 4 5
|
sylancr |
|- ( y e. RR -> ( _i x. y ) e. CC ) |
| 7 |
|
ax-1cn |
|- 1 e. CC |
| 8 |
|
adddir |
|- ( ( x e. CC /\ ( _i x. y ) e. CC /\ 1 e. CC ) -> ( ( x + ( _i x. y ) ) x. 1 ) = ( ( x x. 1 ) + ( ( _i x. y ) x. 1 ) ) ) |
| 9 |
7 8
|
mp3an3 |
|- ( ( x e. CC /\ ( _i x. y ) e. CC ) -> ( ( x + ( _i x. y ) ) x. 1 ) = ( ( x x. 1 ) + ( ( _i x. y ) x. 1 ) ) ) |
| 10 |
2 6 9
|
syl2an |
|- ( ( x e. RR /\ y e. RR ) -> ( ( x + ( _i x. y ) ) x. 1 ) = ( ( x x. 1 ) + ( ( _i x. y ) x. 1 ) ) ) |
| 11 |
|
ax-1rid |
|- ( x e. RR -> ( x x. 1 ) = x ) |
| 12 |
|
mulass |
|- ( ( _i e. CC /\ y e. CC /\ 1 e. CC ) -> ( ( _i x. y ) x. 1 ) = ( _i x. ( y x. 1 ) ) ) |
| 13 |
3 7 12
|
mp3an13 |
|- ( y e. CC -> ( ( _i x. y ) x. 1 ) = ( _i x. ( y x. 1 ) ) ) |
| 14 |
4 13
|
syl |
|- ( y e. RR -> ( ( _i x. y ) x. 1 ) = ( _i x. ( y x. 1 ) ) ) |
| 15 |
|
ax-1rid |
|- ( y e. RR -> ( y x. 1 ) = y ) |
| 16 |
15
|
oveq2d |
|- ( y e. RR -> ( _i x. ( y x. 1 ) ) = ( _i x. y ) ) |
| 17 |
14 16
|
eqtrd |
|- ( y e. RR -> ( ( _i x. y ) x. 1 ) = ( _i x. y ) ) |
| 18 |
11 17
|
oveqan12d |
|- ( ( x e. RR /\ y e. RR ) -> ( ( x x. 1 ) + ( ( _i x. y ) x. 1 ) ) = ( x + ( _i x. y ) ) ) |
| 19 |
10 18
|
eqtrd |
|- ( ( x e. RR /\ y e. RR ) -> ( ( x + ( _i x. y ) ) x. 1 ) = ( x + ( _i x. y ) ) ) |
| 20 |
|
oveq1 |
|- ( A = ( x + ( _i x. y ) ) -> ( A x. 1 ) = ( ( x + ( _i x. y ) ) x. 1 ) ) |
| 21 |
|
id |
|- ( A = ( x + ( _i x. y ) ) -> A = ( x + ( _i x. y ) ) ) |
| 22 |
20 21
|
eqeq12d |
|- ( A = ( x + ( _i x. y ) ) -> ( ( A x. 1 ) = A <-> ( ( x + ( _i x. y ) ) x. 1 ) = ( x + ( _i x. y ) ) ) ) |
| 23 |
19 22
|
syl5ibrcom |
|- ( ( x e. RR /\ y e. RR ) -> ( A = ( x + ( _i x. y ) ) -> ( A x. 1 ) = A ) ) |
| 24 |
23
|
rexlimivv |
|- ( E. x e. RR E. y e. RR A = ( x + ( _i x. y ) ) -> ( A x. 1 ) = A ) |
| 25 |
1 24
|
syl |
|- ( A e. CC -> ( A x. 1 ) = A ) |