Metamath Proof Explorer


Theorem muls1d

Description: Multiplication by one minus a number. (Contributed by Scott Fenton, 23-Dec-2017)

Ref Expression
Hypotheses muls1d.1
|- ( ph -> A e. CC )
muls1d.2
|- ( ph -> B e. CC )
Assertion muls1d
|- ( ph -> ( A x. ( B - 1 ) ) = ( ( A x. B ) - A ) )

Proof

Step Hyp Ref Expression
1 muls1d.1
 |-  ( ph -> A e. CC )
2 muls1d.2
 |-  ( ph -> B e. CC )
3 1cnd
 |-  ( ph -> 1 e. CC )
4 1 2 3 subdid
 |-  ( ph -> ( A x. ( B - 1 ) ) = ( ( A x. B ) - ( A x. 1 ) ) )
5 1 mulid1d
 |-  ( ph -> ( A x. 1 ) = A )
6 5 oveq2d
 |-  ( ph -> ( ( A x. B ) - ( A x. 1 ) ) = ( ( A x. B ) - A ) )
7 4 6 eqtrd
 |-  ( ph -> ( A x. ( B - 1 ) ) = ( ( A x. B ) - A ) )