Metamath Proof Explorer


Theorem mulsassd

Description: Associative law for surreal multiplication. Part of theorem 7 of Conway p. 19. (Contributed by Scott Fenton, 10-Mar-2025)

Ref Expression
Hypotheses mulsassd.1
|- ( ph -> A e. No )
mulsassd.2
|- ( ph -> B e. No )
mulsassd.3
|- ( ph -> C e. No )
Assertion mulsassd
|- ( ph -> ( ( A x.s B ) x.s C ) = ( A x.s ( B x.s C ) ) )

Proof

Step Hyp Ref Expression
1 mulsassd.1
 |-  ( ph -> A e. No )
2 mulsassd.2
 |-  ( ph -> B e. No )
3 mulsassd.3
 |-  ( ph -> C e. No )
4 mulsass
 |-  ( ( A e. No /\ B e. No /\ C e. No ) -> ( ( A x.s B ) x.s C ) = ( A x.s ( B x.s C ) ) )
5 1 2 3 4 syl3anc
 |-  ( ph -> ( ( A x.s B ) x.s C ) = ( A x.s ( B x.s C ) ) )