Description: Associative law for surreal multiplication. Part of theorem 7 of Conway p. 19. (Contributed by Scott Fenton, 10-Mar-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mulsassd.1 | |- ( ph -> A e. No ) |
|
mulsassd.2 | |- ( ph -> B e. No ) |
||
mulsassd.3 | |- ( ph -> C e. No ) |
||
Assertion | mulsassd | |- ( ph -> ( ( A x.s B ) x.s C ) = ( A x.s ( B x.s C ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mulsassd.1 | |- ( ph -> A e. No ) |
|
2 | mulsassd.2 | |- ( ph -> B e. No ) |
|
3 | mulsassd.3 | |- ( ph -> C e. No ) |
|
4 | mulsass | |- ( ( A e. No /\ B e. No /\ C e. No ) -> ( ( A x.s B ) x.s C ) = ( A x.s ( B x.s C ) ) ) |
|
5 | 1 2 3 4 | syl3anc | |- ( ph -> ( ( A x.s B ) x.s C ) = ( A x.s ( B x.s C ) ) ) |