| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mulsasslem3.1 |
|- ( ph -> A e. No ) |
| 2 |
|
mulsasslem3.2 |
|- ( ph -> B e. No ) |
| 3 |
|
mulsasslem3.3 |
|- ( ph -> C e. No ) |
| 4 |
|
mulsasslem3.4 |
|- P C_ ( ( _Left ` A ) u. ( _Right ` A ) ) |
| 5 |
|
mulsasslem3.5 |
|- Q C_ ( ( _Left ` B ) u. ( _Right ` B ) ) |
| 6 |
|
mulsasslem3.6 |
|- R C_ ( ( _Left ` C ) u. ( _Right ` C ) ) |
| 7 |
|
mulsasslem3.7 |
|- ( ph -> A. xO e. ( ( _Left ` A ) u. ( _Right ` A ) ) A. yO e. ( ( _Left ` B ) u. ( _Right ` B ) ) A. zO e. ( ( _Left ` C ) u. ( _Right ` C ) ) ( ( xO x.s yO ) x.s zO ) = ( xO x.s ( yO x.s zO ) ) ) |
| 8 |
|
mulsasslem3.8 |
|- ( ph -> A. xO e. ( ( _Left ` A ) u. ( _Right ` A ) ) A. yO e. ( ( _Left ` B ) u. ( _Right ` B ) ) ( ( xO x.s yO ) x.s C ) = ( xO x.s ( yO x.s C ) ) ) |
| 9 |
|
mulsasslem3.9 |
|- ( ph -> A. xO e. ( ( _Left ` A ) u. ( _Right ` A ) ) A. zO e. ( ( _Left ` C ) u. ( _Right ` C ) ) ( ( xO x.s B ) x.s zO ) = ( xO x.s ( B x.s zO ) ) ) |
| 10 |
|
mulsasslem3.10 |
|- ( ph -> A. yO e. ( ( _Left ` B ) u. ( _Right ` B ) ) A. zO e. ( ( _Left ` C ) u. ( _Right ` C ) ) ( ( A x.s yO ) x.s zO ) = ( A x.s ( yO x.s zO ) ) ) |
| 11 |
|
mulsasslem3.11 |
|- ( ph -> A. xO e. ( ( _Left ` A ) u. ( _Right ` A ) ) ( ( xO x.s B ) x.s C ) = ( xO x.s ( B x.s C ) ) ) |
| 12 |
|
mulsasslem3.12 |
|- ( ph -> A. yO e. ( ( _Left ` B ) u. ( _Right ` B ) ) ( ( A x.s yO ) x.s C ) = ( A x.s ( yO x.s C ) ) ) |
| 13 |
|
mulsasslem3.13 |
|- ( ph -> A. zO e. ( ( _Left ` C ) u. ( _Right ` C ) ) ( ( A x.s B ) x.s zO ) = ( A x.s ( B x.s zO ) ) ) |
| 14 |
|
oveq1 |
|- ( xO = x -> ( xO x.s B ) = ( x x.s B ) ) |
| 15 |
14
|
oveq1d |
|- ( xO = x -> ( ( xO x.s B ) x.s C ) = ( ( x x.s B ) x.s C ) ) |
| 16 |
|
oveq1 |
|- ( xO = x -> ( xO x.s ( B x.s C ) ) = ( x x.s ( B x.s C ) ) ) |
| 17 |
15 16
|
eqeq12d |
|- ( xO = x -> ( ( ( xO x.s B ) x.s C ) = ( xO x.s ( B x.s C ) ) <-> ( ( x x.s B ) x.s C ) = ( x x.s ( B x.s C ) ) ) ) |
| 18 |
11
|
adantr |
|- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> A. xO e. ( ( _Left ` A ) u. ( _Right ` A ) ) ( ( xO x.s B ) x.s C ) = ( xO x.s ( B x.s C ) ) ) |
| 19 |
|
simprll |
|- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> x e. P ) |
| 20 |
4 19
|
sselid |
|- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> x e. ( ( _Left ` A ) u. ( _Right ` A ) ) ) |
| 21 |
17 18 20
|
rspcdva |
|- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> ( ( x x.s B ) x.s C ) = ( x x.s ( B x.s C ) ) ) |
| 22 |
|
oveq2 |
|- ( yO = y -> ( A x.s yO ) = ( A x.s y ) ) |
| 23 |
22
|
oveq1d |
|- ( yO = y -> ( ( A x.s yO ) x.s C ) = ( ( A x.s y ) x.s C ) ) |
| 24 |
|
oveq1 |
|- ( yO = y -> ( yO x.s C ) = ( y x.s C ) ) |
| 25 |
24
|
oveq2d |
|- ( yO = y -> ( A x.s ( yO x.s C ) ) = ( A x.s ( y x.s C ) ) ) |
| 26 |
23 25
|
eqeq12d |
|- ( yO = y -> ( ( ( A x.s yO ) x.s C ) = ( A x.s ( yO x.s C ) ) <-> ( ( A x.s y ) x.s C ) = ( A x.s ( y x.s C ) ) ) ) |
| 27 |
12
|
adantr |
|- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> A. yO e. ( ( _Left ` B ) u. ( _Right ` B ) ) ( ( A x.s yO ) x.s C ) = ( A x.s ( yO x.s C ) ) ) |
| 28 |
|
simprlr |
|- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> y e. Q ) |
| 29 |
5 28
|
sselid |
|- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> y e. ( ( _Left ` B ) u. ( _Right ` B ) ) ) |
| 30 |
26 27 29
|
rspcdva |
|- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> ( ( A x.s y ) x.s C ) = ( A x.s ( y x.s C ) ) ) |
| 31 |
|
oveq2 |
|- ( zO = z -> ( ( A x.s B ) x.s zO ) = ( ( A x.s B ) x.s z ) ) |
| 32 |
|
oveq2 |
|- ( zO = z -> ( B x.s zO ) = ( B x.s z ) ) |
| 33 |
32
|
oveq2d |
|- ( zO = z -> ( A x.s ( B x.s zO ) ) = ( A x.s ( B x.s z ) ) ) |
| 34 |
31 33
|
eqeq12d |
|- ( zO = z -> ( ( ( A x.s B ) x.s zO ) = ( A x.s ( B x.s zO ) ) <-> ( ( A x.s B ) x.s z ) = ( A x.s ( B x.s z ) ) ) ) |
| 35 |
13
|
adantr |
|- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> A. zO e. ( ( _Left ` C ) u. ( _Right ` C ) ) ( ( A x.s B ) x.s zO ) = ( A x.s ( B x.s zO ) ) ) |
| 36 |
|
simprr |
|- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> z e. R ) |
| 37 |
6 36
|
sselid |
|- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> z e. ( ( _Left ` C ) u. ( _Right ` C ) ) ) |
| 38 |
34 35 37
|
rspcdva |
|- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> ( ( A x.s B ) x.s z ) = ( A x.s ( B x.s z ) ) ) |
| 39 |
|
leftssno |
|- ( _Left ` A ) C_ No |
| 40 |
|
rightssno |
|- ( _Right ` A ) C_ No |
| 41 |
39 40
|
unssi |
|- ( ( _Left ` A ) u. ( _Right ` A ) ) C_ No |
| 42 |
4 41
|
sstri |
|- P C_ No |
| 43 |
42 19
|
sselid |
|- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> x e. No ) |
| 44 |
2
|
adantr |
|- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> B e. No ) |
| 45 |
43 44
|
mulscld |
|- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> ( x x.s B ) e. No ) |
| 46 |
|
leftssno |
|- ( _Left ` C ) C_ No |
| 47 |
|
rightssno |
|- ( _Right ` C ) C_ No |
| 48 |
46 47
|
unssi |
|- ( ( _Left ` C ) u. ( _Right ` C ) ) C_ No |
| 49 |
6 48
|
sstri |
|- R C_ No |
| 50 |
49 36
|
sselid |
|- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> z e. No ) |
| 51 |
45 50
|
mulscld |
|- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> ( ( x x.s B ) x.s z ) e. No ) |
| 52 |
1
|
adantr |
|- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> A e. No ) |
| 53 |
|
leftssno |
|- ( _Left ` B ) C_ No |
| 54 |
|
rightssno |
|- ( _Right ` B ) C_ No |
| 55 |
53 54
|
unssi |
|- ( ( _Left ` B ) u. ( _Right ` B ) ) C_ No |
| 56 |
5 55
|
sstri |
|- Q C_ No |
| 57 |
56 28
|
sselid |
|- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> y e. No ) |
| 58 |
52 57
|
mulscld |
|- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> ( A x.s y ) e. No ) |
| 59 |
58 50
|
mulscld |
|- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> ( ( A x.s y ) x.s z ) e. No ) |
| 60 |
51 59
|
addscomd |
|- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> ( ( ( x x.s B ) x.s z ) +s ( ( A x.s y ) x.s z ) ) = ( ( ( A x.s y ) x.s z ) +s ( ( x x.s B ) x.s z ) ) ) |
| 61 |
60
|
oveq1d |
|- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> ( ( ( ( x x.s B ) x.s z ) +s ( ( A x.s y ) x.s z ) ) -s ( ( x x.s y ) x.s z ) ) = ( ( ( ( A x.s y ) x.s z ) +s ( ( x x.s B ) x.s z ) ) -s ( ( x x.s y ) x.s z ) ) ) |
| 62 |
43 57
|
mulscld |
|- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> ( x x.s y ) e. No ) |
| 63 |
62 50
|
mulscld |
|- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> ( ( x x.s y ) x.s z ) e. No ) |
| 64 |
59 51 63
|
addsubsassd |
|- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> ( ( ( ( A x.s y ) x.s z ) +s ( ( x x.s B ) x.s z ) ) -s ( ( x x.s y ) x.s z ) ) = ( ( ( A x.s y ) x.s z ) +s ( ( ( x x.s B ) x.s z ) -s ( ( x x.s y ) x.s z ) ) ) ) |
| 65 |
61 64
|
eqtrd |
|- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> ( ( ( ( x x.s B ) x.s z ) +s ( ( A x.s y ) x.s z ) ) -s ( ( x x.s y ) x.s z ) ) = ( ( ( A x.s y ) x.s z ) +s ( ( ( x x.s B ) x.s z ) -s ( ( x x.s y ) x.s z ) ) ) ) |
| 66 |
65
|
oveq1d |
|- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> ( ( ( ( ( x x.s B ) x.s z ) +s ( ( A x.s y ) x.s z ) ) -s ( ( x x.s y ) x.s z ) ) +s ( ( x x.s y ) x.s C ) ) = ( ( ( ( A x.s y ) x.s z ) +s ( ( ( x x.s B ) x.s z ) -s ( ( x x.s y ) x.s z ) ) ) +s ( ( x x.s y ) x.s C ) ) ) |
| 67 |
51 63
|
subscld |
|- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> ( ( ( x x.s B ) x.s z ) -s ( ( x x.s y ) x.s z ) ) e. No ) |
| 68 |
3
|
adantr |
|- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> C e. No ) |
| 69 |
62 68
|
mulscld |
|- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> ( ( x x.s y ) x.s C ) e. No ) |
| 70 |
59 67 69
|
addsassd |
|- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> ( ( ( ( A x.s y ) x.s z ) +s ( ( ( x x.s B ) x.s z ) -s ( ( x x.s y ) x.s z ) ) ) +s ( ( x x.s y ) x.s C ) ) = ( ( ( A x.s y ) x.s z ) +s ( ( ( ( x x.s B ) x.s z ) -s ( ( x x.s y ) x.s z ) ) +s ( ( x x.s y ) x.s C ) ) ) ) |
| 71 |
22
|
oveq1d |
|- ( yO = y -> ( ( A x.s yO ) x.s zO ) = ( ( A x.s y ) x.s zO ) ) |
| 72 |
|
oveq1 |
|- ( yO = y -> ( yO x.s zO ) = ( y x.s zO ) ) |
| 73 |
72
|
oveq2d |
|- ( yO = y -> ( A x.s ( yO x.s zO ) ) = ( A x.s ( y x.s zO ) ) ) |
| 74 |
71 73
|
eqeq12d |
|- ( yO = y -> ( ( ( A x.s yO ) x.s zO ) = ( A x.s ( yO x.s zO ) ) <-> ( ( A x.s y ) x.s zO ) = ( A x.s ( y x.s zO ) ) ) ) |
| 75 |
|
oveq2 |
|- ( zO = z -> ( ( A x.s y ) x.s zO ) = ( ( A x.s y ) x.s z ) ) |
| 76 |
|
oveq2 |
|- ( zO = z -> ( y x.s zO ) = ( y x.s z ) ) |
| 77 |
76
|
oveq2d |
|- ( zO = z -> ( A x.s ( y x.s zO ) ) = ( A x.s ( y x.s z ) ) ) |
| 78 |
75 77
|
eqeq12d |
|- ( zO = z -> ( ( ( A x.s y ) x.s zO ) = ( A x.s ( y x.s zO ) ) <-> ( ( A x.s y ) x.s z ) = ( A x.s ( y x.s z ) ) ) ) |
| 79 |
10
|
adantr |
|- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> A. yO e. ( ( _Left ` B ) u. ( _Right ` B ) ) A. zO e. ( ( _Left ` C ) u. ( _Right ` C ) ) ( ( A x.s yO ) x.s zO ) = ( A x.s ( yO x.s zO ) ) ) |
| 80 |
74 78 79 29 37
|
rspc2dv |
|- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> ( ( A x.s y ) x.s z ) = ( A x.s ( y x.s z ) ) ) |
| 81 |
51 69 63
|
addsubsd |
|- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> ( ( ( ( x x.s B ) x.s z ) +s ( ( x x.s y ) x.s C ) ) -s ( ( x x.s y ) x.s z ) ) = ( ( ( ( x x.s B ) x.s z ) -s ( ( x x.s y ) x.s z ) ) +s ( ( x x.s y ) x.s C ) ) ) |
| 82 |
14
|
oveq1d |
|- ( xO = x -> ( ( xO x.s B ) x.s zO ) = ( ( x x.s B ) x.s zO ) ) |
| 83 |
|
oveq1 |
|- ( xO = x -> ( xO x.s ( B x.s zO ) ) = ( x x.s ( B x.s zO ) ) ) |
| 84 |
82 83
|
eqeq12d |
|- ( xO = x -> ( ( ( xO x.s B ) x.s zO ) = ( xO x.s ( B x.s zO ) ) <-> ( ( x x.s B ) x.s zO ) = ( x x.s ( B x.s zO ) ) ) ) |
| 85 |
|
oveq2 |
|- ( zO = z -> ( ( x x.s B ) x.s zO ) = ( ( x x.s B ) x.s z ) ) |
| 86 |
32
|
oveq2d |
|- ( zO = z -> ( x x.s ( B x.s zO ) ) = ( x x.s ( B x.s z ) ) ) |
| 87 |
85 86
|
eqeq12d |
|- ( zO = z -> ( ( ( x x.s B ) x.s zO ) = ( x x.s ( B x.s zO ) ) <-> ( ( x x.s B ) x.s z ) = ( x x.s ( B x.s z ) ) ) ) |
| 88 |
9
|
adantr |
|- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> A. xO e. ( ( _Left ` A ) u. ( _Right ` A ) ) A. zO e. ( ( _Left ` C ) u. ( _Right ` C ) ) ( ( xO x.s B ) x.s zO ) = ( xO x.s ( B x.s zO ) ) ) |
| 89 |
84 87 88 20 37
|
rspc2dv |
|- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> ( ( x x.s B ) x.s z ) = ( x x.s ( B x.s z ) ) ) |
| 90 |
|
oveq1 |
|- ( xO = x -> ( xO x.s yO ) = ( x x.s yO ) ) |
| 91 |
90
|
oveq1d |
|- ( xO = x -> ( ( xO x.s yO ) x.s C ) = ( ( x x.s yO ) x.s C ) ) |
| 92 |
|
oveq1 |
|- ( xO = x -> ( xO x.s ( yO x.s C ) ) = ( x x.s ( yO x.s C ) ) ) |
| 93 |
91 92
|
eqeq12d |
|- ( xO = x -> ( ( ( xO x.s yO ) x.s C ) = ( xO x.s ( yO x.s C ) ) <-> ( ( x x.s yO ) x.s C ) = ( x x.s ( yO x.s C ) ) ) ) |
| 94 |
|
oveq2 |
|- ( yO = y -> ( x x.s yO ) = ( x x.s y ) ) |
| 95 |
94
|
oveq1d |
|- ( yO = y -> ( ( x x.s yO ) x.s C ) = ( ( x x.s y ) x.s C ) ) |
| 96 |
24
|
oveq2d |
|- ( yO = y -> ( x x.s ( yO x.s C ) ) = ( x x.s ( y x.s C ) ) ) |
| 97 |
95 96
|
eqeq12d |
|- ( yO = y -> ( ( ( x x.s yO ) x.s C ) = ( x x.s ( yO x.s C ) ) <-> ( ( x x.s y ) x.s C ) = ( x x.s ( y x.s C ) ) ) ) |
| 98 |
8
|
adantr |
|- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> A. xO e. ( ( _Left ` A ) u. ( _Right ` A ) ) A. yO e. ( ( _Left ` B ) u. ( _Right ` B ) ) ( ( xO x.s yO ) x.s C ) = ( xO x.s ( yO x.s C ) ) ) |
| 99 |
93 97 98 20 29
|
rspc2dv |
|- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> ( ( x x.s y ) x.s C ) = ( x x.s ( y x.s C ) ) ) |
| 100 |
89 99
|
oveq12d |
|- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> ( ( ( x x.s B ) x.s z ) +s ( ( x x.s y ) x.s C ) ) = ( ( x x.s ( B x.s z ) ) +s ( x x.s ( y x.s C ) ) ) ) |
| 101 |
44 50
|
mulscld |
|- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> ( B x.s z ) e. No ) |
| 102 |
43 101
|
mulscld |
|- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> ( x x.s ( B x.s z ) ) e. No ) |
| 103 |
57 68
|
mulscld |
|- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> ( y x.s C ) e. No ) |
| 104 |
43 103
|
mulscld |
|- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> ( x x.s ( y x.s C ) ) e. No ) |
| 105 |
102 104
|
addscomd |
|- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> ( ( x x.s ( B x.s z ) ) +s ( x x.s ( y x.s C ) ) ) = ( ( x x.s ( y x.s C ) ) +s ( x x.s ( B x.s z ) ) ) ) |
| 106 |
100 105
|
eqtrd |
|- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> ( ( ( x x.s B ) x.s z ) +s ( ( x x.s y ) x.s C ) ) = ( ( x x.s ( y x.s C ) ) +s ( x x.s ( B x.s z ) ) ) ) |
| 107 |
90
|
oveq1d |
|- ( xO = x -> ( ( xO x.s yO ) x.s zO ) = ( ( x x.s yO ) x.s zO ) ) |
| 108 |
|
oveq1 |
|- ( xO = x -> ( xO x.s ( yO x.s zO ) ) = ( x x.s ( yO x.s zO ) ) ) |
| 109 |
107 108
|
eqeq12d |
|- ( xO = x -> ( ( ( xO x.s yO ) x.s zO ) = ( xO x.s ( yO x.s zO ) ) <-> ( ( x x.s yO ) x.s zO ) = ( x x.s ( yO x.s zO ) ) ) ) |
| 110 |
94
|
oveq1d |
|- ( yO = y -> ( ( x x.s yO ) x.s zO ) = ( ( x x.s y ) x.s zO ) ) |
| 111 |
72
|
oveq2d |
|- ( yO = y -> ( x x.s ( yO x.s zO ) ) = ( x x.s ( y x.s zO ) ) ) |
| 112 |
110 111
|
eqeq12d |
|- ( yO = y -> ( ( ( x x.s yO ) x.s zO ) = ( x x.s ( yO x.s zO ) ) <-> ( ( x x.s y ) x.s zO ) = ( x x.s ( y x.s zO ) ) ) ) |
| 113 |
|
oveq2 |
|- ( zO = z -> ( ( x x.s y ) x.s zO ) = ( ( x x.s y ) x.s z ) ) |
| 114 |
76
|
oveq2d |
|- ( zO = z -> ( x x.s ( y x.s zO ) ) = ( x x.s ( y x.s z ) ) ) |
| 115 |
113 114
|
eqeq12d |
|- ( zO = z -> ( ( ( x x.s y ) x.s zO ) = ( x x.s ( y x.s zO ) ) <-> ( ( x x.s y ) x.s z ) = ( x x.s ( y x.s z ) ) ) ) |
| 116 |
7
|
adantr |
|- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> A. xO e. ( ( _Left ` A ) u. ( _Right ` A ) ) A. yO e. ( ( _Left ` B ) u. ( _Right ` B ) ) A. zO e. ( ( _Left ` C ) u. ( _Right ` C ) ) ( ( xO x.s yO ) x.s zO ) = ( xO x.s ( yO x.s zO ) ) ) |
| 117 |
109 112 115 116 20 29 37
|
rspc3dv |
|- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> ( ( x x.s y ) x.s z ) = ( x x.s ( y x.s z ) ) ) |
| 118 |
106 117
|
oveq12d |
|- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> ( ( ( ( x x.s B ) x.s z ) +s ( ( x x.s y ) x.s C ) ) -s ( ( x x.s y ) x.s z ) ) = ( ( ( x x.s ( y x.s C ) ) +s ( x x.s ( B x.s z ) ) ) -s ( x x.s ( y x.s z ) ) ) ) |
| 119 |
81 118
|
eqtr3d |
|- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> ( ( ( ( x x.s B ) x.s z ) -s ( ( x x.s y ) x.s z ) ) +s ( ( x x.s y ) x.s C ) ) = ( ( ( x x.s ( y x.s C ) ) +s ( x x.s ( B x.s z ) ) ) -s ( x x.s ( y x.s z ) ) ) ) |
| 120 |
80 119
|
oveq12d |
|- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> ( ( ( A x.s y ) x.s z ) +s ( ( ( ( x x.s B ) x.s z ) -s ( ( x x.s y ) x.s z ) ) +s ( ( x x.s y ) x.s C ) ) ) = ( ( A x.s ( y x.s z ) ) +s ( ( ( x x.s ( y x.s C ) ) +s ( x x.s ( B x.s z ) ) ) -s ( x x.s ( y x.s z ) ) ) ) ) |
| 121 |
66 70 120
|
3eqtrd |
|- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> ( ( ( ( ( x x.s B ) x.s z ) +s ( ( A x.s y ) x.s z ) ) -s ( ( x x.s y ) x.s z ) ) +s ( ( x x.s y ) x.s C ) ) = ( ( A x.s ( y x.s z ) ) +s ( ( ( x x.s ( y x.s C ) ) +s ( x x.s ( B x.s z ) ) ) -s ( x x.s ( y x.s z ) ) ) ) ) |
| 122 |
38 121
|
oveq12d |
|- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> ( ( ( A x.s B ) x.s z ) -s ( ( ( ( ( x x.s B ) x.s z ) +s ( ( A x.s y ) x.s z ) ) -s ( ( x x.s y ) x.s z ) ) +s ( ( x x.s y ) x.s C ) ) ) = ( ( A x.s ( B x.s z ) ) -s ( ( A x.s ( y x.s z ) ) +s ( ( ( x x.s ( y x.s C ) ) +s ( x x.s ( B x.s z ) ) ) -s ( x x.s ( y x.s z ) ) ) ) ) ) |
| 123 |
52 44
|
mulscld |
|- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> ( A x.s B ) e. No ) |
| 124 |
123 50
|
mulscld |
|- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> ( ( A x.s B ) x.s z ) e. No ) |
| 125 |
51 59
|
addscld |
|- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> ( ( ( x x.s B ) x.s z ) +s ( ( A x.s y ) x.s z ) ) e. No ) |
| 126 |
125 63
|
subscld |
|- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> ( ( ( ( x x.s B ) x.s z ) +s ( ( A x.s y ) x.s z ) ) -s ( ( x x.s y ) x.s z ) ) e. No ) |
| 127 |
124 126 69
|
subsubs4d |
|- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> ( ( ( ( A x.s B ) x.s z ) -s ( ( ( ( x x.s B ) x.s z ) +s ( ( A x.s y ) x.s z ) ) -s ( ( x x.s y ) x.s z ) ) ) -s ( ( x x.s y ) x.s C ) ) = ( ( ( A x.s B ) x.s z ) -s ( ( ( ( ( x x.s B ) x.s z ) +s ( ( A x.s y ) x.s z ) ) -s ( ( x x.s y ) x.s z ) ) +s ( ( x x.s y ) x.s C ) ) ) ) |
| 128 |
52 101
|
mulscld |
|- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> ( A x.s ( B x.s z ) ) e. No ) |
| 129 |
57 50
|
mulscld |
|- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> ( y x.s z ) e. No ) |
| 130 |
52 129
|
mulscld |
|- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> ( A x.s ( y x.s z ) ) e. No ) |
| 131 |
104 102
|
addscld |
|- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> ( ( x x.s ( y x.s C ) ) +s ( x x.s ( B x.s z ) ) ) e. No ) |
| 132 |
43 129
|
mulscld |
|- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> ( x x.s ( y x.s z ) ) e. No ) |
| 133 |
131 132
|
subscld |
|- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> ( ( ( x x.s ( y x.s C ) ) +s ( x x.s ( B x.s z ) ) ) -s ( x x.s ( y x.s z ) ) ) e. No ) |
| 134 |
128 130 133
|
subsubs4d |
|- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> ( ( ( A x.s ( B x.s z ) ) -s ( A x.s ( y x.s z ) ) ) -s ( ( ( x x.s ( y x.s C ) ) +s ( x x.s ( B x.s z ) ) ) -s ( x x.s ( y x.s z ) ) ) ) = ( ( A x.s ( B x.s z ) ) -s ( ( A x.s ( y x.s z ) ) +s ( ( ( x x.s ( y x.s C ) ) +s ( x x.s ( B x.s z ) ) ) -s ( x x.s ( y x.s z ) ) ) ) ) ) |
| 135 |
122 127 134
|
3eqtr4d |
|- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> ( ( ( ( A x.s B ) x.s z ) -s ( ( ( ( x x.s B ) x.s z ) +s ( ( A x.s y ) x.s z ) ) -s ( ( x x.s y ) x.s z ) ) ) -s ( ( x x.s y ) x.s C ) ) = ( ( ( A x.s ( B x.s z ) ) -s ( A x.s ( y x.s z ) ) ) -s ( ( ( x x.s ( y x.s C ) ) +s ( x x.s ( B x.s z ) ) ) -s ( x x.s ( y x.s z ) ) ) ) ) |
| 136 |
30 135
|
oveq12d |
|- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> ( ( ( A x.s y ) x.s C ) +s ( ( ( ( A x.s B ) x.s z ) -s ( ( ( ( x x.s B ) x.s z ) +s ( ( A x.s y ) x.s z ) ) -s ( ( x x.s y ) x.s z ) ) ) -s ( ( x x.s y ) x.s C ) ) ) = ( ( A x.s ( y x.s C ) ) +s ( ( ( A x.s ( B x.s z ) ) -s ( A x.s ( y x.s z ) ) ) -s ( ( ( x x.s ( y x.s C ) ) +s ( x x.s ( B x.s z ) ) ) -s ( x x.s ( y x.s z ) ) ) ) ) ) |
| 137 |
58 68
|
mulscld |
|- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> ( ( A x.s y ) x.s C ) e. No ) |
| 138 |
124 126
|
subscld |
|- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> ( ( ( A x.s B ) x.s z ) -s ( ( ( ( x x.s B ) x.s z ) +s ( ( A x.s y ) x.s z ) ) -s ( ( x x.s y ) x.s z ) ) ) e. No ) |
| 139 |
137 138 69
|
addsubsd |
|- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> ( ( ( ( A x.s y ) x.s C ) +s ( ( ( A x.s B ) x.s z ) -s ( ( ( ( x x.s B ) x.s z ) +s ( ( A x.s y ) x.s z ) ) -s ( ( x x.s y ) x.s z ) ) ) ) -s ( ( x x.s y ) x.s C ) ) = ( ( ( ( A x.s y ) x.s C ) -s ( ( x x.s y ) x.s C ) ) +s ( ( ( A x.s B ) x.s z ) -s ( ( ( ( x x.s B ) x.s z ) +s ( ( A x.s y ) x.s z ) ) -s ( ( x x.s y ) x.s z ) ) ) ) ) |
| 140 |
137 138 69
|
addsubsassd |
|- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> ( ( ( ( A x.s y ) x.s C ) +s ( ( ( A x.s B ) x.s z ) -s ( ( ( ( x x.s B ) x.s z ) +s ( ( A x.s y ) x.s z ) ) -s ( ( x x.s y ) x.s z ) ) ) ) -s ( ( x x.s y ) x.s C ) ) = ( ( ( A x.s y ) x.s C ) +s ( ( ( ( A x.s B ) x.s z ) -s ( ( ( ( x x.s B ) x.s z ) +s ( ( A x.s y ) x.s z ) ) -s ( ( x x.s y ) x.s z ) ) ) -s ( ( x x.s y ) x.s C ) ) ) ) |
| 141 |
139 140
|
eqtr3d |
|- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> ( ( ( ( A x.s y ) x.s C ) -s ( ( x x.s y ) x.s C ) ) +s ( ( ( A x.s B ) x.s z ) -s ( ( ( ( x x.s B ) x.s z ) +s ( ( A x.s y ) x.s z ) ) -s ( ( x x.s y ) x.s z ) ) ) ) = ( ( ( A x.s y ) x.s C ) +s ( ( ( ( A x.s B ) x.s z ) -s ( ( ( ( x x.s B ) x.s z ) +s ( ( A x.s y ) x.s z ) ) -s ( ( x x.s y ) x.s z ) ) ) -s ( ( x x.s y ) x.s C ) ) ) ) |
| 142 |
52 103
|
mulscld |
|- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> ( A x.s ( y x.s C ) ) e. No ) |
| 143 |
142 128 130
|
addsubsassd |
|- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> ( ( ( A x.s ( y x.s C ) ) +s ( A x.s ( B x.s z ) ) ) -s ( A x.s ( y x.s z ) ) ) = ( ( A x.s ( y x.s C ) ) +s ( ( A x.s ( B x.s z ) ) -s ( A x.s ( y x.s z ) ) ) ) ) |
| 144 |
143
|
oveq1d |
|- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> ( ( ( ( A x.s ( y x.s C ) ) +s ( A x.s ( B x.s z ) ) ) -s ( A x.s ( y x.s z ) ) ) -s ( ( ( x x.s ( y x.s C ) ) +s ( x x.s ( B x.s z ) ) ) -s ( x x.s ( y x.s z ) ) ) ) = ( ( ( A x.s ( y x.s C ) ) +s ( ( A x.s ( B x.s z ) ) -s ( A x.s ( y x.s z ) ) ) ) -s ( ( ( x x.s ( y x.s C ) ) +s ( x x.s ( B x.s z ) ) ) -s ( x x.s ( y x.s z ) ) ) ) ) |
| 145 |
128 130
|
subscld |
|- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> ( ( A x.s ( B x.s z ) ) -s ( A x.s ( y x.s z ) ) ) e. No ) |
| 146 |
142 145 133
|
addsubsassd |
|- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> ( ( ( A x.s ( y x.s C ) ) +s ( ( A x.s ( B x.s z ) ) -s ( A x.s ( y x.s z ) ) ) ) -s ( ( ( x x.s ( y x.s C ) ) +s ( x x.s ( B x.s z ) ) ) -s ( x x.s ( y x.s z ) ) ) ) = ( ( A x.s ( y x.s C ) ) +s ( ( ( A x.s ( B x.s z ) ) -s ( A x.s ( y x.s z ) ) ) -s ( ( ( x x.s ( y x.s C ) ) +s ( x x.s ( B x.s z ) ) ) -s ( x x.s ( y x.s z ) ) ) ) ) ) |
| 147 |
144 146
|
eqtrd |
|- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> ( ( ( ( A x.s ( y x.s C ) ) +s ( A x.s ( B x.s z ) ) ) -s ( A x.s ( y x.s z ) ) ) -s ( ( ( x x.s ( y x.s C ) ) +s ( x x.s ( B x.s z ) ) ) -s ( x x.s ( y x.s z ) ) ) ) = ( ( A x.s ( y x.s C ) ) +s ( ( ( A x.s ( B x.s z ) ) -s ( A x.s ( y x.s z ) ) ) -s ( ( ( x x.s ( y x.s C ) ) +s ( x x.s ( B x.s z ) ) ) -s ( x x.s ( y x.s z ) ) ) ) ) ) |
| 148 |
136 141 147
|
3eqtr4d |
|- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> ( ( ( ( A x.s y ) x.s C ) -s ( ( x x.s y ) x.s C ) ) +s ( ( ( A x.s B ) x.s z ) -s ( ( ( ( x x.s B ) x.s z ) +s ( ( A x.s y ) x.s z ) ) -s ( ( x x.s y ) x.s z ) ) ) ) = ( ( ( ( A x.s ( y x.s C ) ) +s ( A x.s ( B x.s z ) ) ) -s ( A x.s ( y x.s z ) ) ) -s ( ( ( x x.s ( y x.s C ) ) +s ( x x.s ( B x.s z ) ) ) -s ( x x.s ( y x.s z ) ) ) ) ) |
| 149 |
21 148
|
oveq12d |
|- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> ( ( ( x x.s B ) x.s C ) +s ( ( ( ( A x.s y ) x.s C ) -s ( ( x x.s y ) x.s C ) ) +s ( ( ( A x.s B ) x.s z ) -s ( ( ( ( x x.s B ) x.s z ) +s ( ( A x.s y ) x.s z ) ) -s ( ( x x.s y ) x.s z ) ) ) ) ) = ( ( x x.s ( B x.s C ) ) +s ( ( ( ( A x.s ( y x.s C ) ) +s ( A x.s ( B x.s z ) ) ) -s ( A x.s ( y x.s z ) ) ) -s ( ( ( x x.s ( y x.s C ) ) +s ( x x.s ( B x.s z ) ) ) -s ( x x.s ( y x.s z ) ) ) ) ) ) |
| 150 |
45 68
|
mulscld |
|- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> ( ( x x.s B ) x.s C ) e. No ) |
| 151 |
150 137
|
addscld |
|- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> ( ( ( x x.s B ) x.s C ) +s ( ( A x.s y ) x.s C ) ) e. No ) |
| 152 |
151 69
|
subscld |
|- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> ( ( ( ( x x.s B ) x.s C ) +s ( ( A x.s y ) x.s C ) ) -s ( ( x x.s y ) x.s C ) ) e. No ) |
| 153 |
152 124 126
|
addsubsassd |
|- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> ( ( ( ( ( ( x x.s B ) x.s C ) +s ( ( A x.s y ) x.s C ) ) -s ( ( x x.s y ) x.s C ) ) +s ( ( A x.s B ) x.s z ) ) -s ( ( ( ( x x.s B ) x.s z ) +s ( ( A x.s y ) x.s z ) ) -s ( ( x x.s y ) x.s z ) ) ) = ( ( ( ( ( x x.s B ) x.s C ) +s ( ( A x.s y ) x.s C ) ) -s ( ( x x.s y ) x.s C ) ) +s ( ( ( A x.s B ) x.s z ) -s ( ( ( ( x x.s B ) x.s z ) +s ( ( A x.s y ) x.s z ) ) -s ( ( x x.s y ) x.s z ) ) ) ) ) |
| 154 |
150 137 69
|
addsubsassd |
|- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> ( ( ( ( x x.s B ) x.s C ) +s ( ( A x.s y ) x.s C ) ) -s ( ( x x.s y ) x.s C ) ) = ( ( ( x x.s B ) x.s C ) +s ( ( ( A x.s y ) x.s C ) -s ( ( x x.s y ) x.s C ) ) ) ) |
| 155 |
154
|
oveq1d |
|- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> ( ( ( ( ( x x.s B ) x.s C ) +s ( ( A x.s y ) x.s C ) ) -s ( ( x x.s y ) x.s C ) ) +s ( ( ( A x.s B ) x.s z ) -s ( ( ( ( x x.s B ) x.s z ) +s ( ( A x.s y ) x.s z ) ) -s ( ( x x.s y ) x.s z ) ) ) ) = ( ( ( ( x x.s B ) x.s C ) +s ( ( ( A x.s y ) x.s C ) -s ( ( x x.s y ) x.s C ) ) ) +s ( ( ( A x.s B ) x.s z ) -s ( ( ( ( x x.s B ) x.s z ) +s ( ( A x.s y ) x.s z ) ) -s ( ( x x.s y ) x.s z ) ) ) ) ) |
| 156 |
137 69
|
subscld |
|- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> ( ( ( A x.s y ) x.s C ) -s ( ( x x.s y ) x.s C ) ) e. No ) |
| 157 |
150 156 138
|
addsassd |
|- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> ( ( ( ( x x.s B ) x.s C ) +s ( ( ( A x.s y ) x.s C ) -s ( ( x x.s y ) x.s C ) ) ) +s ( ( ( A x.s B ) x.s z ) -s ( ( ( ( x x.s B ) x.s z ) +s ( ( A x.s y ) x.s z ) ) -s ( ( x x.s y ) x.s z ) ) ) ) = ( ( ( x x.s B ) x.s C ) +s ( ( ( ( A x.s y ) x.s C ) -s ( ( x x.s y ) x.s C ) ) +s ( ( ( A x.s B ) x.s z ) -s ( ( ( ( x x.s B ) x.s z ) +s ( ( A x.s y ) x.s z ) ) -s ( ( x x.s y ) x.s z ) ) ) ) ) ) |
| 158 |
153 155 157
|
3eqtrd |
|- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> ( ( ( ( ( ( x x.s B ) x.s C ) +s ( ( A x.s y ) x.s C ) ) -s ( ( x x.s y ) x.s C ) ) +s ( ( A x.s B ) x.s z ) ) -s ( ( ( ( x x.s B ) x.s z ) +s ( ( A x.s y ) x.s z ) ) -s ( ( x x.s y ) x.s z ) ) ) = ( ( ( x x.s B ) x.s C ) +s ( ( ( ( A x.s y ) x.s C ) -s ( ( x x.s y ) x.s C ) ) +s ( ( ( A x.s B ) x.s z ) -s ( ( ( ( x x.s B ) x.s z ) +s ( ( A x.s y ) x.s z ) ) -s ( ( x x.s y ) x.s z ) ) ) ) ) ) |
| 159 |
44 68
|
mulscld |
|- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> ( B x.s C ) e. No ) |
| 160 |
43 159
|
mulscld |
|- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> ( x x.s ( B x.s C ) ) e. No ) |
| 161 |
142 128
|
addscld |
|- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> ( ( A x.s ( y x.s C ) ) +s ( A x.s ( B x.s z ) ) ) e. No ) |
| 162 |
161 130
|
subscld |
|- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> ( ( ( A x.s ( y x.s C ) ) +s ( A x.s ( B x.s z ) ) ) -s ( A x.s ( y x.s z ) ) ) e. No ) |
| 163 |
160 162 133
|
addsubsassd |
|- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> ( ( ( x x.s ( B x.s C ) ) +s ( ( ( A x.s ( y x.s C ) ) +s ( A x.s ( B x.s z ) ) ) -s ( A x.s ( y x.s z ) ) ) ) -s ( ( ( x x.s ( y x.s C ) ) +s ( x x.s ( B x.s z ) ) ) -s ( x x.s ( y x.s z ) ) ) ) = ( ( x x.s ( B x.s C ) ) +s ( ( ( ( A x.s ( y x.s C ) ) +s ( A x.s ( B x.s z ) ) ) -s ( A x.s ( y x.s z ) ) ) -s ( ( ( x x.s ( y x.s C ) ) +s ( x x.s ( B x.s z ) ) ) -s ( x x.s ( y x.s z ) ) ) ) ) ) |
| 164 |
149 158 163
|
3eqtr4d |
|- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> ( ( ( ( ( ( x x.s B ) x.s C ) +s ( ( A x.s y ) x.s C ) ) -s ( ( x x.s y ) x.s C ) ) +s ( ( A x.s B ) x.s z ) ) -s ( ( ( ( x x.s B ) x.s z ) +s ( ( A x.s y ) x.s z ) ) -s ( ( x x.s y ) x.s z ) ) ) = ( ( ( x x.s ( B x.s C ) ) +s ( ( ( A x.s ( y x.s C ) ) +s ( A x.s ( B x.s z ) ) ) -s ( A x.s ( y x.s z ) ) ) ) -s ( ( ( x x.s ( y x.s C ) ) +s ( x x.s ( B x.s z ) ) ) -s ( x x.s ( y x.s z ) ) ) ) ) |
| 165 |
45 58
|
addscld |
|- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> ( ( x x.s B ) +s ( A x.s y ) ) e. No ) |
| 166 |
165 62 68
|
subsdird |
|- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> ( ( ( ( x x.s B ) +s ( A x.s y ) ) -s ( x x.s y ) ) x.s C ) = ( ( ( ( x x.s B ) +s ( A x.s y ) ) x.s C ) -s ( ( x x.s y ) x.s C ) ) ) |
| 167 |
45 58 68
|
addsdird |
|- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> ( ( ( x x.s B ) +s ( A x.s y ) ) x.s C ) = ( ( ( x x.s B ) x.s C ) +s ( ( A x.s y ) x.s C ) ) ) |
| 168 |
167
|
oveq1d |
|- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> ( ( ( ( x x.s B ) +s ( A x.s y ) ) x.s C ) -s ( ( x x.s y ) x.s C ) ) = ( ( ( ( x x.s B ) x.s C ) +s ( ( A x.s y ) x.s C ) ) -s ( ( x x.s y ) x.s C ) ) ) |
| 169 |
166 168
|
eqtrd |
|- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> ( ( ( ( x x.s B ) +s ( A x.s y ) ) -s ( x x.s y ) ) x.s C ) = ( ( ( ( x x.s B ) x.s C ) +s ( ( A x.s y ) x.s C ) ) -s ( ( x x.s y ) x.s C ) ) ) |
| 170 |
169
|
oveq1d |
|- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> ( ( ( ( ( x x.s B ) +s ( A x.s y ) ) -s ( x x.s y ) ) x.s C ) +s ( ( A x.s B ) x.s z ) ) = ( ( ( ( ( x x.s B ) x.s C ) +s ( ( A x.s y ) x.s C ) ) -s ( ( x x.s y ) x.s C ) ) +s ( ( A x.s B ) x.s z ) ) ) |
| 171 |
165 62 50
|
subsdird |
|- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> ( ( ( ( x x.s B ) +s ( A x.s y ) ) -s ( x x.s y ) ) x.s z ) = ( ( ( ( x x.s B ) +s ( A x.s y ) ) x.s z ) -s ( ( x x.s y ) x.s z ) ) ) |
| 172 |
45 58 50
|
addsdird |
|- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> ( ( ( x x.s B ) +s ( A x.s y ) ) x.s z ) = ( ( ( x x.s B ) x.s z ) +s ( ( A x.s y ) x.s z ) ) ) |
| 173 |
172
|
oveq1d |
|- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> ( ( ( ( x x.s B ) +s ( A x.s y ) ) x.s z ) -s ( ( x x.s y ) x.s z ) ) = ( ( ( ( x x.s B ) x.s z ) +s ( ( A x.s y ) x.s z ) ) -s ( ( x x.s y ) x.s z ) ) ) |
| 174 |
171 173
|
eqtrd |
|- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> ( ( ( ( x x.s B ) +s ( A x.s y ) ) -s ( x x.s y ) ) x.s z ) = ( ( ( ( x x.s B ) x.s z ) +s ( ( A x.s y ) x.s z ) ) -s ( ( x x.s y ) x.s z ) ) ) |
| 175 |
170 174
|
oveq12d |
|- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> ( ( ( ( ( ( x x.s B ) +s ( A x.s y ) ) -s ( x x.s y ) ) x.s C ) +s ( ( A x.s B ) x.s z ) ) -s ( ( ( ( x x.s B ) +s ( A x.s y ) ) -s ( x x.s y ) ) x.s z ) ) = ( ( ( ( ( ( x x.s B ) x.s C ) +s ( ( A x.s y ) x.s C ) ) -s ( ( x x.s y ) x.s C ) ) +s ( ( A x.s B ) x.s z ) ) -s ( ( ( ( x x.s B ) x.s z ) +s ( ( A x.s y ) x.s z ) ) -s ( ( x x.s y ) x.s z ) ) ) ) |
| 176 |
103 101
|
addscld |
|- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> ( ( y x.s C ) +s ( B x.s z ) ) e. No ) |
| 177 |
52 176 129
|
subsdid |
|- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> ( A x.s ( ( ( y x.s C ) +s ( B x.s z ) ) -s ( y x.s z ) ) ) = ( ( A x.s ( ( y x.s C ) +s ( B x.s z ) ) ) -s ( A x.s ( y x.s z ) ) ) ) |
| 178 |
52 103 101
|
addsdid |
|- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> ( A x.s ( ( y x.s C ) +s ( B x.s z ) ) ) = ( ( A x.s ( y x.s C ) ) +s ( A x.s ( B x.s z ) ) ) ) |
| 179 |
178
|
oveq1d |
|- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> ( ( A x.s ( ( y x.s C ) +s ( B x.s z ) ) ) -s ( A x.s ( y x.s z ) ) ) = ( ( ( A x.s ( y x.s C ) ) +s ( A x.s ( B x.s z ) ) ) -s ( A x.s ( y x.s z ) ) ) ) |
| 180 |
177 179
|
eqtrd |
|- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> ( A x.s ( ( ( y x.s C ) +s ( B x.s z ) ) -s ( y x.s z ) ) ) = ( ( ( A x.s ( y x.s C ) ) +s ( A x.s ( B x.s z ) ) ) -s ( A x.s ( y x.s z ) ) ) ) |
| 181 |
180
|
oveq2d |
|- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> ( ( x x.s ( B x.s C ) ) +s ( A x.s ( ( ( y x.s C ) +s ( B x.s z ) ) -s ( y x.s z ) ) ) ) = ( ( x x.s ( B x.s C ) ) +s ( ( ( A x.s ( y x.s C ) ) +s ( A x.s ( B x.s z ) ) ) -s ( A x.s ( y x.s z ) ) ) ) ) |
| 182 |
43 176 129
|
subsdid |
|- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> ( x x.s ( ( ( y x.s C ) +s ( B x.s z ) ) -s ( y x.s z ) ) ) = ( ( x x.s ( ( y x.s C ) +s ( B x.s z ) ) ) -s ( x x.s ( y x.s z ) ) ) ) |
| 183 |
43 103 101
|
addsdid |
|- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> ( x x.s ( ( y x.s C ) +s ( B x.s z ) ) ) = ( ( x x.s ( y x.s C ) ) +s ( x x.s ( B x.s z ) ) ) ) |
| 184 |
183
|
oveq1d |
|- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> ( ( x x.s ( ( y x.s C ) +s ( B x.s z ) ) ) -s ( x x.s ( y x.s z ) ) ) = ( ( ( x x.s ( y x.s C ) ) +s ( x x.s ( B x.s z ) ) ) -s ( x x.s ( y x.s z ) ) ) ) |
| 185 |
182 184
|
eqtrd |
|- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> ( x x.s ( ( ( y x.s C ) +s ( B x.s z ) ) -s ( y x.s z ) ) ) = ( ( ( x x.s ( y x.s C ) ) +s ( x x.s ( B x.s z ) ) ) -s ( x x.s ( y x.s z ) ) ) ) |
| 186 |
181 185
|
oveq12d |
|- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> ( ( ( x x.s ( B x.s C ) ) +s ( A x.s ( ( ( y x.s C ) +s ( B x.s z ) ) -s ( y x.s z ) ) ) ) -s ( x x.s ( ( ( y x.s C ) +s ( B x.s z ) ) -s ( y x.s z ) ) ) ) = ( ( ( x x.s ( B x.s C ) ) +s ( ( ( A x.s ( y x.s C ) ) +s ( A x.s ( B x.s z ) ) ) -s ( A x.s ( y x.s z ) ) ) ) -s ( ( ( x x.s ( y x.s C ) ) +s ( x x.s ( B x.s z ) ) ) -s ( x x.s ( y x.s z ) ) ) ) ) |
| 187 |
164 175 186
|
3eqtr4d |
|- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> ( ( ( ( ( ( x x.s B ) +s ( A x.s y ) ) -s ( x x.s y ) ) x.s C ) +s ( ( A x.s B ) x.s z ) ) -s ( ( ( ( x x.s B ) +s ( A x.s y ) ) -s ( x x.s y ) ) x.s z ) ) = ( ( ( x x.s ( B x.s C ) ) +s ( A x.s ( ( ( y x.s C ) +s ( B x.s z ) ) -s ( y x.s z ) ) ) ) -s ( x x.s ( ( ( y x.s C ) +s ( B x.s z ) ) -s ( y x.s z ) ) ) ) ) |
| 188 |
187
|
eqeq2d |
|- ( ( ph /\ ( ( x e. P /\ y e. Q ) /\ z e. R ) ) -> ( a = ( ( ( ( ( ( x x.s B ) +s ( A x.s y ) ) -s ( x x.s y ) ) x.s C ) +s ( ( A x.s B ) x.s z ) ) -s ( ( ( ( x x.s B ) +s ( A x.s y ) ) -s ( x x.s y ) ) x.s z ) ) <-> a = ( ( ( x x.s ( B x.s C ) ) +s ( A x.s ( ( ( y x.s C ) +s ( B x.s z ) ) -s ( y x.s z ) ) ) ) -s ( x x.s ( ( ( y x.s C ) +s ( B x.s z ) ) -s ( y x.s z ) ) ) ) ) ) |
| 189 |
188
|
anassrs |
|- ( ( ( ph /\ ( x e. P /\ y e. Q ) ) /\ z e. R ) -> ( a = ( ( ( ( ( ( x x.s B ) +s ( A x.s y ) ) -s ( x x.s y ) ) x.s C ) +s ( ( A x.s B ) x.s z ) ) -s ( ( ( ( x x.s B ) +s ( A x.s y ) ) -s ( x x.s y ) ) x.s z ) ) <-> a = ( ( ( x x.s ( B x.s C ) ) +s ( A x.s ( ( ( y x.s C ) +s ( B x.s z ) ) -s ( y x.s z ) ) ) ) -s ( x x.s ( ( ( y x.s C ) +s ( B x.s z ) ) -s ( y x.s z ) ) ) ) ) ) |
| 190 |
189
|
rexbidva |
|- ( ( ph /\ ( x e. P /\ y e. Q ) ) -> ( E. z e. R a = ( ( ( ( ( ( x x.s B ) +s ( A x.s y ) ) -s ( x x.s y ) ) x.s C ) +s ( ( A x.s B ) x.s z ) ) -s ( ( ( ( x x.s B ) +s ( A x.s y ) ) -s ( x x.s y ) ) x.s z ) ) <-> E. z e. R a = ( ( ( x x.s ( B x.s C ) ) +s ( A x.s ( ( ( y x.s C ) +s ( B x.s z ) ) -s ( y x.s z ) ) ) ) -s ( x x.s ( ( ( y x.s C ) +s ( B x.s z ) ) -s ( y x.s z ) ) ) ) ) ) |
| 191 |
190
|
2rexbidva |
|- ( ph -> ( E. x e. P E. y e. Q E. z e. R a = ( ( ( ( ( ( x x.s B ) +s ( A x.s y ) ) -s ( x x.s y ) ) x.s C ) +s ( ( A x.s B ) x.s z ) ) -s ( ( ( ( x x.s B ) +s ( A x.s y ) ) -s ( x x.s y ) ) x.s z ) ) <-> E. x e. P E. y e. Q E. z e. R a = ( ( ( x x.s ( B x.s C ) ) +s ( A x.s ( ( ( y x.s C ) +s ( B x.s z ) ) -s ( y x.s z ) ) ) ) -s ( x x.s ( ( ( y x.s C ) +s ( B x.s z ) ) -s ( y x.s z ) ) ) ) ) ) |