Step |
Hyp |
Ref |
Expression |
1 |
|
mulscan2d.1 |
|- ( ph -> A e. No ) |
2 |
|
mulscan2d.2 |
|- ( ph -> B e. No ) |
3 |
|
mulscan2d.3 |
|- ( ph -> C e. No ) |
4 |
|
mulscan2dlem.1 |
|- ( ph -> 0s |
5 |
1 2 3 4
|
slemul1d |
|- ( ph -> ( A <_s B <-> ( A x.s C ) <_s ( B x.s C ) ) ) |
6 |
2 1 3 4
|
slemul1d |
|- ( ph -> ( B <_s A <-> ( B x.s C ) <_s ( A x.s C ) ) ) |
7 |
5 6
|
anbi12d |
|- ( ph -> ( ( A <_s B /\ B <_s A ) <-> ( ( A x.s C ) <_s ( B x.s C ) /\ ( B x.s C ) <_s ( A x.s C ) ) ) ) |
8 |
|
sletri3 |
|- ( ( A e. No /\ B e. No ) -> ( A = B <-> ( A <_s B /\ B <_s A ) ) ) |
9 |
1 2 8
|
syl2anc |
|- ( ph -> ( A = B <-> ( A <_s B /\ B <_s A ) ) ) |
10 |
1 3
|
mulscld |
|- ( ph -> ( A x.s C ) e. No ) |
11 |
2 3
|
mulscld |
|- ( ph -> ( B x.s C ) e. No ) |
12 |
|
sletri3 |
|- ( ( ( A x.s C ) e. No /\ ( B x.s C ) e. No ) -> ( ( A x.s C ) = ( B x.s C ) <-> ( ( A x.s C ) <_s ( B x.s C ) /\ ( B x.s C ) <_s ( A x.s C ) ) ) ) |
13 |
10 11 12
|
syl2anc |
|- ( ph -> ( ( A x.s C ) = ( B x.s C ) <-> ( ( A x.s C ) <_s ( B x.s C ) /\ ( B x.s C ) <_s ( A x.s C ) ) ) ) |
14 |
7 9 13
|
3bitr4rd |
|- ( ph -> ( ( A x.s C ) = ( B x.s C ) <-> A = B ) ) |