Step |
Hyp |
Ref |
Expression |
1 |
|
mulscutlem.1 |
|- ( ph -> A e. No ) |
2 |
|
mulscutlem.2 |
|- ( ph -> B e. No ) |
3 |
|
mulsprop |
|- ( ( ( e e. No /\ f e. No ) /\ ( g e. No /\ h e. No ) /\ ( i e. No /\ j e. No ) ) -> ( ( e x.s f ) e. No /\ ( ( g ( ( g x.s j ) -s ( g x.s i ) ) |
4 |
3
|
a1d |
|- ( ( ( e e. No /\ f e. No ) /\ ( g e. No /\ h e. No ) /\ ( i e. No /\ j e. No ) ) -> ( ( ( ( bday ` e ) +no ( bday ` f ) ) u. ( ( ( ( bday ` g ) +no ( bday ` i ) ) u. ( ( bday ` h ) +no ( bday ` j ) ) ) u. ( ( ( bday ` g ) +no ( bday ` j ) ) u. ( ( bday ` h ) +no ( bday ` i ) ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) u. ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) ) ) -> ( ( e x.s f ) e. No /\ ( ( g ( ( g x.s j ) -s ( g x.s i ) ) |
5 |
4
|
3expa |
|- ( ( ( ( e e. No /\ f e. No ) /\ ( g e. No /\ h e. No ) ) /\ ( i e. No /\ j e. No ) ) -> ( ( ( ( bday ` e ) +no ( bday ` f ) ) u. ( ( ( ( bday ` g ) +no ( bday ` i ) ) u. ( ( bday ` h ) +no ( bday ` j ) ) ) u. ( ( ( bday ` g ) +no ( bday ` j ) ) u. ( ( bday ` h ) +no ( bday ` i ) ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) u. ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) ) ) -> ( ( e x.s f ) e. No /\ ( ( g ( ( g x.s j ) -s ( g x.s i ) ) |
6 |
5
|
ralrimivva |
|- ( ( ( e e. No /\ f e. No ) /\ ( g e. No /\ h e. No ) ) -> A. i e. No A. j e. No ( ( ( ( bday ` e ) +no ( bday ` f ) ) u. ( ( ( ( bday ` g ) +no ( bday ` i ) ) u. ( ( bday ` h ) +no ( bday ` j ) ) ) u. ( ( ( bday ` g ) +no ( bday ` j ) ) u. ( ( bday ` h ) +no ( bday ` i ) ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) u. ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) ) ) -> ( ( e x.s f ) e. No /\ ( ( g ( ( g x.s j ) -s ( g x.s i ) ) |
7 |
6
|
ralrimivva |
|- ( ( e e. No /\ f e. No ) -> A. g e. No A. h e. No A. i e. No A. j e. No ( ( ( ( bday ` e ) +no ( bday ` f ) ) u. ( ( ( ( bday ` g ) +no ( bday ` i ) ) u. ( ( bday ` h ) +no ( bday ` j ) ) ) u. ( ( ( bday ` g ) +no ( bday ` j ) ) u. ( ( bday ` h ) +no ( bday ` i ) ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) u. ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) ) ) -> ( ( e x.s f ) e. No /\ ( ( g ( ( g x.s j ) -s ( g x.s i ) ) |
8 |
7
|
rgen2 |
|- A. e e. No A. f e. No A. g e. No A. h e. No A. i e. No A. j e. No ( ( ( ( bday ` e ) +no ( bday ` f ) ) u. ( ( ( ( bday ` g ) +no ( bday ` i ) ) u. ( ( bday ` h ) +no ( bday ` j ) ) ) u. ( ( ( bday ` g ) +no ( bday ` j ) ) u. ( ( bday ` h ) +no ( bday ` i ) ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) u. ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) ) ) -> ( ( e x.s f ) e. No /\ ( ( g ( ( g x.s j ) -s ( g x.s i ) ) |
9 |
8
|
a1i |
|- ( ( A e. No /\ B e. No ) -> A. e e. No A. f e. No A. g e. No A. h e. No A. i e. No A. j e. No ( ( ( ( bday ` e ) +no ( bday ` f ) ) u. ( ( ( ( bday ` g ) +no ( bday ` i ) ) u. ( ( bday ` h ) +no ( bday ` j ) ) ) u. ( ( ( bday ` g ) +no ( bday ` j ) ) u. ( ( bday ` h ) +no ( bday ` i ) ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) u. ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) ) ) -> ( ( e x.s f ) e. No /\ ( ( g ( ( g x.s j ) -s ( g x.s i ) ) |
10 |
|
simpl |
|- ( ( A e. No /\ B e. No ) -> A e. No ) |
11 |
|
simpr |
|- ( ( A e. No /\ B e. No ) -> B e. No ) |
12 |
9 10 11
|
mulsproplem10 |
|- ( ( A e. No /\ B e. No ) -> ( ( A x.s B ) e. No /\ ( { a | E. p e. ( _Left ` A ) E. q e. ( _Left ` B ) a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) } u. { b | E. r e. ( _Right ` A ) E. s e. ( _Right ` B ) b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) } ) < |
13 |
1 2 12
|
syl2anc |
|- ( ph -> ( ( A x.s B ) e. No /\ ( { a | E. p e. ( _Left ` A ) E. q e. ( _Left ` B ) a = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) } u. { b | E. r e. ( _Right ` A ) E. s e. ( _Right ` B ) b = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) } ) < |