Metamath Proof Explorer


Theorem mulsproplem1

Description: Lemma for surreal multiplication. Instantiate some variables. (Contributed by Scott Fenton, 4-Mar-2025)

Ref Expression
Hypotheses mulsproplem.1
|- ( ph -> A. a e. No A. b e. No A. c e. No A. d e. No A. e e. No A. f e. No ( ( ( ( bday ` a ) +no ( bday ` b ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) -> ( ( a x.s b ) e. No /\ ( ( c  ( ( c x.s f ) -s ( c x.s e ) ) 
mulsproplem1.1
|- ( ph -> X e. No )
mulsproplem1.2
|- ( ph -> Y e. No )
mulsproplem1.3
|- ( ph -> Z e. No )
mulsproplem1.4
|- ( ph -> W e. No )
mulsproplem1.5
|- ( ph -> T e. No )
mulsproplem1.6
|- ( ph -> U e. No )
mulsproplem1.7
|- ( ph -> ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( ( ( bday ` Z ) +no ( bday ` T ) ) u. ( ( bday ` W ) +no ( bday ` U ) ) ) u. ( ( ( bday ` Z ) +no ( bday ` U ) ) u. ( ( bday ` W ) +no ( bday ` T ) ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) )
Assertion mulsproplem1
|- ( ph -> ( ( X x.s Y ) e. No /\ ( ( Z  ( ( Z x.s U ) -s ( Z x.s T ) ) 

Proof

Step Hyp Ref Expression
1 mulsproplem.1
 |-  ( ph -> A. a e. No A. b e. No A. c e. No A. d e. No A. e e. No A. f e. No ( ( ( ( bday ` a ) +no ( bday ` b ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) -> ( ( a x.s b ) e. No /\ ( ( c  ( ( c x.s f ) -s ( c x.s e ) ) 
2 mulsproplem1.1
 |-  ( ph -> X e. No )
3 mulsproplem1.2
 |-  ( ph -> Y e. No )
4 mulsproplem1.3
 |-  ( ph -> Z e. No )
5 mulsproplem1.4
 |-  ( ph -> W e. No )
6 mulsproplem1.5
 |-  ( ph -> T e. No )
7 mulsproplem1.6
 |-  ( ph -> U e. No )
8 mulsproplem1.7
 |-  ( ph -> ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( ( ( bday ` Z ) +no ( bday ` T ) ) u. ( ( bday ` W ) +no ( bday ` U ) ) ) u. ( ( ( bday ` Z ) +no ( bday ` U ) ) u. ( ( bday ` W ) +no ( bday ` T ) ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) )
9 fveq2
 |-  ( a = X -> ( bday ` a ) = ( bday ` X ) )
10 9 oveq1d
 |-  ( a = X -> ( ( bday ` a ) +no ( bday ` b ) ) = ( ( bday ` X ) +no ( bday ` b ) ) )
11 10 uneq1d
 |-  ( a = X -> ( ( ( bday ` a ) +no ( bday ` b ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) = ( ( ( bday ` X ) +no ( bday ` b ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) )
12 11 eleq1d
 |-  ( a = X -> ( ( ( ( bday ` a ) +no ( bday ` b ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) <-> ( ( ( bday ` X ) +no ( bday ` b ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) ) )
13 oveq1
 |-  ( a = X -> ( a x.s b ) = ( X x.s b ) )
14 13 eleq1d
 |-  ( a = X -> ( ( a x.s b ) e. No <-> ( X x.s b ) e. No ) )
15 14 anbi1d
 |-  ( a = X -> ( ( ( a x.s b ) e. No /\ ( ( c  ( ( c x.s f ) -s ( c x.s e ) )  ( ( X x.s b ) e. No /\ ( ( c  ( ( c x.s f ) -s ( c x.s e ) ) 
16 12 15 imbi12d
 |-  ( a = X -> ( ( ( ( ( bday ` a ) +no ( bday ` b ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) -> ( ( a x.s b ) e. No /\ ( ( c  ( ( c x.s f ) -s ( c x.s e ) )  ( ( ( ( bday ` X ) +no ( bday ` b ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) -> ( ( X x.s b ) e. No /\ ( ( c  ( ( c x.s f ) -s ( c x.s e ) ) 
17 fveq2
 |-  ( b = Y -> ( bday ` b ) = ( bday ` Y ) )
18 17 oveq2d
 |-  ( b = Y -> ( ( bday ` X ) +no ( bday ` b ) ) = ( ( bday ` X ) +no ( bday ` Y ) ) )
19 18 uneq1d
 |-  ( b = Y -> ( ( ( bday ` X ) +no ( bday ` b ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) = ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) )
20 19 eleq1d
 |-  ( b = Y -> ( ( ( ( bday ` X ) +no ( bday ` b ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) <-> ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) ) )
21 oveq2
 |-  ( b = Y -> ( X x.s b ) = ( X x.s Y ) )
22 21 eleq1d
 |-  ( b = Y -> ( ( X x.s b ) e. No <-> ( X x.s Y ) e. No ) )
23 22 anbi1d
 |-  ( b = Y -> ( ( ( X x.s b ) e. No /\ ( ( c  ( ( c x.s f ) -s ( c x.s e ) )  ( ( X x.s Y ) e. No /\ ( ( c  ( ( c x.s f ) -s ( c x.s e ) ) 
24 20 23 imbi12d
 |-  ( b = Y -> ( ( ( ( ( bday ` X ) +no ( bday ` b ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) -> ( ( X x.s b ) e. No /\ ( ( c  ( ( c x.s f ) -s ( c x.s e ) )  ( ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) -> ( ( X x.s Y ) e. No /\ ( ( c  ( ( c x.s f ) -s ( c x.s e ) ) 
25 fveq2
 |-  ( c = Z -> ( bday ` c ) = ( bday ` Z ) )
26 25 oveq1d
 |-  ( c = Z -> ( ( bday ` c ) +no ( bday ` e ) ) = ( ( bday ` Z ) +no ( bday ` e ) ) )
27 26 uneq1d
 |-  ( c = Z -> ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) = ( ( ( bday ` Z ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) )
28 25 oveq1d
 |-  ( c = Z -> ( ( bday ` c ) +no ( bday ` f ) ) = ( ( bday ` Z ) +no ( bday ` f ) ) )
29 28 uneq1d
 |-  ( c = Z -> ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) = ( ( ( bday ` Z ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) )
30 27 29 uneq12d
 |-  ( c = Z -> ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) = ( ( ( ( bday ` Z ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` Z ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) )
31 30 uneq2d
 |-  ( c = Z -> ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) = ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( ( ( bday ` Z ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` Z ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) )
32 31 eleq1d
 |-  ( c = Z -> ( ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) <-> ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( ( ( bday ` Z ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` Z ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) ) )
33 breq1
 |-  ( c = Z -> ( c  Z 
34 33 anbi1d
 |-  ( c = Z -> ( ( c  ( Z 
35 oveq1
 |-  ( c = Z -> ( c x.s f ) = ( Z x.s f ) )
36 oveq1
 |-  ( c = Z -> ( c x.s e ) = ( Z x.s e ) )
37 35 36 oveq12d
 |-  ( c = Z -> ( ( c x.s f ) -s ( c x.s e ) ) = ( ( Z x.s f ) -s ( Z x.s e ) ) )
38 37 breq1d
 |-  ( c = Z -> ( ( ( c x.s f ) -s ( c x.s e ) )  ( ( Z x.s f ) -s ( Z x.s e ) ) 
39 34 38 imbi12d
 |-  ( c = Z -> ( ( ( c  ( ( c x.s f ) -s ( c x.s e ) )  ( ( Z  ( ( Z x.s f ) -s ( Z x.s e ) ) 
40 39 anbi2d
 |-  ( c = Z -> ( ( ( X x.s Y ) e. No /\ ( ( c  ( ( c x.s f ) -s ( c x.s e ) )  ( ( X x.s Y ) e. No /\ ( ( Z  ( ( Z x.s f ) -s ( Z x.s e ) ) 
41 32 40 imbi12d
 |-  ( c = Z -> ( ( ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) -> ( ( X x.s Y ) e. No /\ ( ( c  ( ( c x.s f ) -s ( c x.s e ) )  ( ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( ( ( bday ` Z ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` Z ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) -> ( ( X x.s Y ) e. No /\ ( ( Z  ( ( Z x.s f ) -s ( Z x.s e ) ) 
42 fveq2
 |-  ( d = W -> ( bday ` d ) = ( bday ` W ) )
43 42 oveq1d
 |-  ( d = W -> ( ( bday ` d ) +no ( bday ` f ) ) = ( ( bday ` W ) +no ( bday ` f ) ) )
44 43 uneq2d
 |-  ( d = W -> ( ( ( bday ` Z ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) = ( ( ( bday ` Z ) +no ( bday ` e ) ) u. ( ( bday ` W ) +no ( bday ` f ) ) ) )
45 42 oveq1d
 |-  ( d = W -> ( ( bday ` d ) +no ( bday ` e ) ) = ( ( bday ` W ) +no ( bday ` e ) ) )
46 45 uneq2d
 |-  ( d = W -> ( ( ( bday ` Z ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) = ( ( ( bday ` Z ) +no ( bday ` f ) ) u. ( ( bday ` W ) +no ( bday ` e ) ) ) )
47 44 46 uneq12d
 |-  ( d = W -> ( ( ( ( bday ` Z ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` Z ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) = ( ( ( ( bday ` Z ) +no ( bday ` e ) ) u. ( ( bday ` W ) +no ( bday ` f ) ) ) u. ( ( ( bday ` Z ) +no ( bday ` f ) ) u. ( ( bday ` W ) +no ( bday ` e ) ) ) ) )
48 47 uneq2d
 |-  ( d = W -> ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( ( ( bday ` Z ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` Z ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) = ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( ( ( bday ` Z ) +no ( bday ` e ) ) u. ( ( bday ` W ) +no ( bday ` f ) ) ) u. ( ( ( bday ` Z ) +no ( bday ` f ) ) u. ( ( bday ` W ) +no ( bday ` e ) ) ) ) ) )
49 48 eleq1d
 |-  ( d = W -> ( ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( ( ( bday ` Z ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` Z ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) <-> ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( ( ( bday ` Z ) +no ( bday ` e ) ) u. ( ( bday ` W ) +no ( bday ` f ) ) ) u. ( ( ( bday ` Z ) +no ( bday ` f ) ) u. ( ( bday ` W ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) ) )
50 breq2
 |-  ( d = W -> ( Z  Z 
51 50 anbi1d
 |-  ( d = W -> ( ( Z  ( Z 
52 oveq1
 |-  ( d = W -> ( d x.s f ) = ( W x.s f ) )
53 oveq1
 |-  ( d = W -> ( d x.s e ) = ( W x.s e ) )
54 52 53 oveq12d
 |-  ( d = W -> ( ( d x.s f ) -s ( d x.s e ) ) = ( ( W x.s f ) -s ( W x.s e ) ) )
55 54 breq2d
 |-  ( d = W -> ( ( ( Z x.s f ) -s ( Z x.s e ) )  ( ( Z x.s f ) -s ( Z x.s e ) ) 
56 51 55 imbi12d
 |-  ( d = W -> ( ( ( Z  ( ( Z x.s f ) -s ( Z x.s e ) )  ( ( Z  ( ( Z x.s f ) -s ( Z x.s e ) ) 
57 56 anbi2d
 |-  ( d = W -> ( ( ( X x.s Y ) e. No /\ ( ( Z  ( ( Z x.s f ) -s ( Z x.s e ) )  ( ( X x.s Y ) e. No /\ ( ( Z  ( ( Z x.s f ) -s ( Z x.s e ) ) 
58 49 57 imbi12d
 |-  ( d = W -> ( ( ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( ( ( bday ` Z ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` Z ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) -> ( ( X x.s Y ) e. No /\ ( ( Z  ( ( Z x.s f ) -s ( Z x.s e ) )  ( ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( ( ( bday ` Z ) +no ( bday ` e ) ) u. ( ( bday ` W ) +no ( bday ` f ) ) ) u. ( ( ( bday ` Z ) +no ( bday ` f ) ) u. ( ( bday ` W ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) -> ( ( X x.s Y ) e. No /\ ( ( Z  ( ( Z x.s f ) -s ( Z x.s e ) ) 
59 fveq2
 |-  ( e = T -> ( bday ` e ) = ( bday ` T ) )
60 59 oveq2d
 |-  ( e = T -> ( ( bday ` Z ) +no ( bday ` e ) ) = ( ( bday ` Z ) +no ( bday ` T ) ) )
61 60 uneq1d
 |-  ( e = T -> ( ( ( bday ` Z ) +no ( bday ` e ) ) u. ( ( bday ` W ) +no ( bday ` f ) ) ) = ( ( ( bday ` Z ) +no ( bday ` T ) ) u. ( ( bday ` W ) +no ( bday ` f ) ) ) )
62 59 oveq2d
 |-  ( e = T -> ( ( bday ` W ) +no ( bday ` e ) ) = ( ( bday ` W ) +no ( bday ` T ) ) )
63 62 uneq2d
 |-  ( e = T -> ( ( ( bday ` Z ) +no ( bday ` f ) ) u. ( ( bday ` W ) +no ( bday ` e ) ) ) = ( ( ( bday ` Z ) +no ( bday ` f ) ) u. ( ( bday ` W ) +no ( bday ` T ) ) ) )
64 61 63 uneq12d
 |-  ( e = T -> ( ( ( ( bday ` Z ) +no ( bday ` e ) ) u. ( ( bday ` W ) +no ( bday ` f ) ) ) u. ( ( ( bday ` Z ) +no ( bday ` f ) ) u. ( ( bday ` W ) +no ( bday ` e ) ) ) ) = ( ( ( ( bday ` Z ) +no ( bday ` T ) ) u. ( ( bday ` W ) +no ( bday ` f ) ) ) u. ( ( ( bday ` Z ) +no ( bday ` f ) ) u. ( ( bday ` W ) +no ( bday ` T ) ) ) ) )
65 64 uneq2d
 |-  ( e = T -> ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( ( ( bday ` Z ) +no ( bday ` e ) ) u. ( ( bday ` W ) +no ( bday ` f ) ) ) u. ( ( ( bday ` Z ) +no ( bday ` f ) ) u. ( ( bday ` W ) +no ( bday ` e ) ) ) ) ) = ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( ( ( bday ` Z ) +no ( bday ` T ) ) u. ( ( bday ` W ) +no ( bday ` f ) ) ) u. ( ( ( bday ` Z ) +no ( bday ` f ) ) u. ( ( bday ` W ) +no ( bday ` T ) ) ) ) ) )
66 65 eleq1d
 |-  ( e = T -> ( ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( ( ( bday ` Z ) +no ( bday ` e ) ) u. ( ( bday ` W ) +no ( bday ` f ) ) ) u. ( ( ( bday ` Z ) +no ( bday ` f ) ) u. ( ( bday ` W ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) <-> ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( ( ( bday ` Z ) +no ( bday ` T ) ) u. ( ( bday ` W ) +no ( bday ` f ) ) ) u. ( ( ( bday ` Z ) +no ( bday ` f ) ) u. ( ( bday ` W ) +no ( bday ` T ) ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) ) )
67 breq1
 |-  ( e = T -> ( e  T 
68 67 anbi2d
 |-  ( e = T -> ( ( Z  ( Z 
69 oveq2
 |-  ( e = T -> ( Z x.s e ) = ( Z x.s T ) )
70 69 oveq2d
 |-  ( e = T -> ( ( Z x.s f ) -s ( Z x.s e ) ) = ( ( Z x.s f ) -s ( Z x.s T ) ) )
71 oveq2
 |-  ( e = T -> ( W x.s e ) = ( W x.s T ) )
72 71 oveq2d
 |-  ( e = T -> ( ( W x.s f ) -s ( W x.s e ) ) = ( ( W x.s f ) -s ( W x.s T ) ) )
73 70 72 breq12d
 |-  ( e = T -> ( ( ( Z x.s f ) -s ( Z x.s e ) )  ( ( Z x.s f ) -s ( Z x.s T ) ) 
74 68 73 imbi12d
 |-  ( e = T -> ( ( ( Z  ( ( Z x.s f ) -s ( Z x.s e ) )  ( ( Z  ( ( Z x.s f ) -s ( Z x.s T ) ) 
75 74 anbi2d
 |-  ( e = T -> ( ( ( X x.s Y ) e. No /\ ( ( Z  ( ( Z x.s f ) -s ( Z x.s e ) )  ( ( X x.s Y ) e. No /\ ( ( Z  ( ( Z x.s f ) -s ( Z x.s T ) ) 
76 66 75 imbi12d
 |-  ( e = T -> ( ( ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( ( ( bday ` Z ) +no ( bday ` e ) ) u. ( ( bday ` W ) +no ( bday ` f ) ) ) u. ( ( ( bday ` Z ) +no ( bday ` f ) ) u. ( ( bday ` W ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) -> ( ( X x.s Y ) e. No /\ ( ( Z  ( ( Z x.s f ) -s ( Z x.s e ) )  ( ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( ( ( bday ` Z ) +no ( bday ` T ) ) u. ( ( bday ` W ) +no ( bday ` f ) ) ) u. ( ( ( bday ` Z ) +no ( bday ` f ) ) u. ( ( bday ` W ) +no ( bday ` T ) ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) -> ( ( X x.s Y ) e. No /\ ( ( Z  ( ( Z x.s f ) -s ( Z x.s T ) ) 
77 fveq2
 |-  ( f = U -> ( bday ` f ) = ( bday ` U ) )
78 77 oveq2d
 |-  ( f = U -> ( ( bday ` W ) +no ( bday ` f ) ) = ( ( bday ` W ) +no ( bday ` U ) ) )
79 78 uneq2d
 |-  ( f = U -> ( ( ( bday ` Z ) +no ( bday ` T ) ) u. ( ( bday ` W ) +no ( bday ` f ) ) ) = ( ( ( bday ` Z ) +no ( bday ` T ) ) u. ( ( bday ` W ) +no ( bday ` U ) ) ) )
80 77 oveq2d
 |-  ( f = U -> ( ( bday ` Z ) +no ( bday ` f ) ) = ( ( bday ` Z ) +no ( bday ` U ) ) )
81 80 uneq1d
 |-  ( f = U -> ( ( ( bday ` Z ) +no ( bday ` f ) ) u. ( ( bday ` W ) +no ( bday ` T ) ) ) = ( ( ( bday ` Z ) +no ( bday ` U ) ) u. ( ( bday ` W ) +no ( bday ` T ) ) ) )
82 79 81 uneq12d
 |-  ( f = U -> ( ( ( ( bday ` Z ) +no ( bday ` T ) ) u. ( ( bday ` W ) +no ( bday ` f ) ) ) u. ( ( ( bday ` Z ) +no ( bday ` f ) ) u. ( ( bday ` W ) +no ( bday ` T ) ) ) ) = ( ( ( ( bday ` Z ) +no ( bday ` T ) ) u. ( ( bday ` W ) +no ( bday ` U ) ) ) u. ( ( ( bday ` Z ) +no ( bday ` U ) ) u. ( ( bday ` W ) +no ( bday ` T ) ) ) ) )
83 82 uneq2d
 |-  ( f = U -> ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( ( ( bday ` Z ) +no ( bday ` T ) ) u. ( ( bday ` W ) +no ( bday ` f ) ) ) u. ( ( ( bday ` Z ) +no ( bday ` f ) ) u. ( ( bday ` W ) +no ( bday ` T ) ) ) ) ) = ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( ( ( bday ` Z ) +no ( bday ` T ) ) u. ( ( bday ` W ) +no ( bday ` U ) ) ) u. ( ( ( bday ` Z ) +no ( bday ` U ) ) u. ( ( bday ` W ) +no ( bday ` T ) ) ) ) ) )
84 83 eleq1d
 |-  ( f = U -> ( ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( ( ( bday ` Z ) +no ( bday ` T ) ) u. ( ( bday ` W ) +no ( bday ` f ) ) ) u. ( ( ( bday ` Z ) +no ( bday ` f ) ) u. ( ( bday ` W ) +no ( bday ` T ) ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) <-> ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( ( ( bday ` Z ) +no ( bday ` T ) ) u. ( ( bday ` W ) +no ( bday ` U ) ) ) u. ( ( ( bday ` Z ) +no ( bday ` U ) ) u. ( ( bday ` W ) +no ( bday ` T ) ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) ) )
85 breq2
 |-  ( f = U -> ( T  T 
86 85 anbi2d
 |-  ( f = U -> ( ( Z  ( Z 
87 oveq2
 |-  ( f = U -> ( Z x.s f ) = ( Z x.s U ) )
88 87 oveq1d
 |-  ( f = U -> ( ( Z x.s f ) -s ( Z x.s T ) ) = ( ( Z x.s U ) -s ( Z x.s T ) ) )
89 oveq2
 |-  ( f = U -> ( W x.s f ) = ( W x.s U ) )
90 89 oveq1d
 |-  ( f = U -> ( ( W x.s f ) -s ( W x.s T ) ) = ( ( W x.s U ) -s ( W x.s T ) ) )
91 88 90 breq12d
 |-  ( f = U -> ( ( ( Z x.s f ) -s ( Z x.s T ) )  ( ( Z x.s U ) -s ( Z x.s T ) ) 
92 86 91 imbi12d
 |-  ( f = U -> ( ( ( Z  ( ( Z x.s f ) -s ( Z x.s T ) )  ( ( Z  ( ( Z x.s U ) -s ( Z x.s T ) ) 
93 92 anbi2d
 |-  ( f = U -> ( ( ( X x.s Y ) e. No /\ ( ( Z  ( ( Z x.s f ) -s ( Z x.s T ) )  ( ( X x.s Y ) e. No /\ ( ( Z  ( ( Z x.s U ) -s ( Z x.s T ) ) 
94 84 93 imbi12d
 |-  ( f = U -> ( ( ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( ( ( bday ` Z ) +no ( bday ` T ) ) u. ( ( bday ` W ) +no ( bday ` f ) ) ) u. ( ( ( bday ` Z ) +no ( bday ` f ) ) u. ( ( bday ` W ) +no ( bday ` T ) ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) -> ( ( X x.s Y ) e. No /\ ( ( Z  ( ( Z x.s f ) -s ( Z x.s T ) )  ( ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( ( ( bday ` Z ) +no ( bday ` T ) ) u. ( ( bday ` W ) +no ( bday ` U ) ) ) u. ( ( ( bday ` Z ) +no ( bday ` U ) ) u. ( ( bday ` W ) +no ( bday ` T ) ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) -> ( ( X x.s Y ) e. No /\ ( ( Z  ( ( Z x.s U ) -s ( Z x.s T ) ) 
95 16 24 41 58 76 94 rspc6v
 |-  ( ( ( X e. No /\ Y e. No ) /\ ( Z e. No /\ W e. No ) /\ ( T e. No /\ U e. No ) ) -> ( A. a e. No A. b e. No A. c e. No A. d e. No A. e e. No A. f e. No ( ( ( ( bday ` a ) +no ( bday ` b ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) -> ( ( a x.s b ) e. No /\ ( ( c  ( ( c x.s f ) -s ( c x.s e ) )  ( ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( ( ( bday ` Z ) +no ( bday ` T ) ) u. ( ( bday ` W ) +no ( bday ` U ) ) ) u. ( ( ( bday ` Z ) +no ( bday ` U ) ) u. ( ( bday ` W ) +no ( bday ` T ) ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) -> ( ( X x.s Y ) e. No /\ ( ( Z  ( ( Z x.s U ) -s ( Z x.s T ) ) 
96 2 3 4 5 6 7 95 syl222anc
 |-  ( ph -> ( A. a e. No A. b e. No A. c e. No A. d e. No A. e e. No A. f e. No ( ( ( ( bday ` a ) +no ( bday ` b ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) -> ( ( a x.s b ) e. No /\ ( ( c  ( ( c x.s f ) -s ( c x.s e ) )  ( ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( ( ( bday ` Z ) +no ( bday ` T ) ) u. ( ( bday ` W ) +no ( bday ` U ) ) ) u. ( ( ( bday ` Z ) +no ( bday ` U ) ) u. ( ( bday ` W ) +no ( bday ` T ) ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) -> ( ( X x.s Y ) e. No /\ ( ( Z  ( ( Z x.s U ) -s ( Z x.s T ) ) 
97 1 8 96 mp2d
 |-  ( ph -> ( ( X x.s Y ) e. No /\ ( ( Z  ( ( Z x.s U ) -s ( Z x.s T ) )