Description: Lemma for surreal multiplication. Under the inductive hypothesis, demonstrate closure of surreal multiplication. (Contributed by Scott Fenton, 5-Mar-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mulsproplem.1 | |- ( ph -> A. a e. No A. b e. No A. c e. No A. d e. No A. e e. No A. f e. No ( ( ( ( bday ` a ) +no ( bday ` b ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) -> ( ( a x.s b ) e. No /\ ( ( c |
|
mulsproplem9.1 | |- ( ph -> A e. No ) |
||
mulsproplem9.2 | |- ( ph -> B e. No ) |
||
Assertion | mulsproplem11 | |- ( ph -> ( A x.s B ) e. No ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mulsproplem.1 | |- ( ph -> A. a e. No A. b e. No A. c e. No A. d e. No A. e e. No A. f e. No ( ( ( ( bday ` a ) +no ( bday ` b ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) -> ( ( a x.s b ) e. No /\ ( ( c |
|
2 | mulsproplem9.1 | |- ( ph -> A e. No ) |
|
3 | mulsproplem9.2 | |- ( ph -> B e. No ) |
|
4 | 1 2 3 | mulsproplem10 | |- ( ph -> ( ( A x.s B ) e. No /\ ( { g | E. p e. ( _Left ` A ) E. q e. ( _Left ` B ) g = ( ( ( p x.s B ) +s ( A x.s q ) ) -s ( p x.s q ) ) } u. { h | E. r e. ( _Right ` A ) E. s e. ( _Right ` B ) h = ( ( ( r x.s B ) +s ( A x.s s ) ) -s ( r x.s s ) ) } ) < |
5 | 4 | simp1d | |- ( ph -> ( A x.s B ) e. No ) |