Step |
Hyp |
Ref |
Expression |
1 |
|
mulsproplem.1 |
|- ( ph -> A. a e. No A. b e. No A. c e. No A. d e. No A. e e. No A. f e. No ( ( ( ( bday ` a ) +no ( bday ` b ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) -> ( ( a x.s b ) e. No /\ ( ( c ( ( c x.s f ) -s ( c x.s e ) ) |
2 |
|
mulsproplem.2 |
|- ( ph -> C e. No ) |
3 |
|
mulsproplem.3 |
|- ( ph -> D e. No ) |
4 |
|
mulsproplem.4 |
|- ( ph -> E e. No ) |
5 |
|
mulsproplem.5 |
|- ( ph -> F e. No ) |
6 |
|
mulsproplem.6 |
|- ( ph -> C |
7 |
|
mulsproplem.7 |
|- ( ph -> E |
8 |
|
mulsproplem12.1 |
|- ( ph -> ( ( bday ` C ) e. ( bday ` D ) \/ ( bday ` D ) e. ( bday ` C ) ) ) |
9 |
|
mulsproplem12.2 |
|- ( ph -> ( ( bday ` E ) e. ( bday ` F ) \/ ( bday ` F ) e. ( bday ` E ) ) ) |
10 |
|
unidm |
|- ( ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) u. ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) ) = ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) |
11 |
|
unidm |
|- ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) = ( ( bday ` 0s ) +no ( bday ` 0s ) ) |
12 |
|
bday0s |
|- ( bday ` 0s ) = (/) |
13 |
12 12
|
oveq12i |
|- ( ( bday ` 0s ) +no ( bday ` 0s ) ) = ( (/) +no (/) ) |
14 |
|
0elon |
|- (/) e. On |
15 |
|
naddrid |
|- ( (/) e. On -> ( (/) +no (/) ) = (/) ) |
16 |
14 15
|
ax-mp |
|- ( (/) +no (/) ) = (/) |
17 |
13 16
|
eqtri |
|- ( ( bday ` 0s ) +no ( bday ` 0s ) ) = (/) |
18 |
11 17
|
eqtri |
|- ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) = (/) |
19 |
10 18
|
eqtri |
|- ( ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) u. ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) ) = (/) |
20 |
19
|
uneq2i |
|- ( ( ( bday ` D ) +no ( bday ` F ) ) u. ( ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) u. ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) ) ) = ( ( ( bday ` D ) +no ( bday ` F ) ) u. (/) ) |
21 |
|
un0 |
|- ( ( ( bday ` D ) +no ( bday ` F ) ) u. (/) ) = ( ( bday ` D ) +no ( bday ` F ) ) |
22 |
20 21
|
eqtri |
|- ( ( ( bday ` D ) +no ( bday ` F ) ) u. ( ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) u. ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) ) ) = ( ( bday ` D ) +no ( bday ` F ) ) |
23 |
|
ssun2 |
|- ( ( bday ` D ) +no ( bday ` F ) ) C_ ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) |
24 |
|
ssun1 |
|- ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) C_ ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) |
25 |
23 24
|
sstri |
|- ( ( bday ` D ) +no ( bday ` F ) ) C_ ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) |
26 |
|
ssun2 |
|- ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) C_ ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) |
27 |
25 26
|
sstri |
|- ( ( bday ` D ) +no ( bday ` F ) ) C_ ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) |
28 |
22 27
|
eqsstri |
|- ( ( ( bday ` D ) +no ( bday ` F ) ) u. ( ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) u. ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) ) ) C_ ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) |
29 |
28
|
sseli |
|- ( ( ( ( bday ` a ) +no ( bday ` b ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` D ) +no ( bday ` F ) ) u. ( ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) u. ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) ) ) -> ( ( ( bday ` a ) +no ( bday ` b ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) ) |
30 |
29
|
imim1i |
|- ( ( ( ( ( bday ` a ) +no ( bday ` b ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) -> ( ( a x.s b ) e. No /\ ( ( c ( ( c x.s f ) -s ( c x.s e ) ) ( ( ( ( bday ` a ) +no ( bday ` b ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` D ) +no ( bday ` F ) ) u. ( ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) u. ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) ) ) -> ( ( a x.s b ) e. No /\ ( ( c ( ( c x.s f ) -s ( c x.s e ) ) |
31 |
30
|
6ralimi |
|- ( A. a e. No A. b e. No A. c e. No A. d e. No A. e e. No A. f e. No ( ( ( ( bday ` a ) +no ( bday ` b ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) -> ( ( a x.s b ) e. No /\ ( ( c ( ( c x.s f ) -s ( c x.s e ) ) A. a e. No A. b e. No A. c e. No A. d e. No A. e e. No A. f e. No ( ( ( ( bday ` a ) +no ( bday ` b ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` D ) +no ( bday ` F ) ) u. ( ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) u. ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) ) ) -> ( ( a x.s b ) e. No /\ ( ( c ( ( c x.s f ) -s ( c x.s e ) ) |
32 |
1 31
|
syl |
|- ( ph -> A. a e. No A. b e. No A. c e. No A. d e. No A. e e. No A. f e. No ( ( ( ( bday ` a ) +no ( bday ` b ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` D ) +no ( bday ` F ) ) u. ( ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) u. ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) ) ) -> ( ( a x.s b ) e. No /\ ( ( c ( ( c x.s f ) -s ( c x.s e ) ) |
33 |
32 3 5
|
mulsproplem10 |
|- ( ph -> ( ( D x.s F ) e. No /\ ( { g | E. p e. ( _Left ` D ) E. q e. ( _Left ` F ) g = ( ( ( p x.s F ) +s ( D x.s q ) ) -s ( p x.s q ) ) } u. { h | E. r e. ( _Right ` D ) E. s e. ( _Right ` F ) h = ( ( ( r x.s F ) +s ( D x.s s ) ) -s ( r x.s s ) ) } ) < |
34 |
33
|
simp2d |
|- ( ph -> ( { g | E. p e. ( _Left ` D ) E. q e. ( _Left ` F ) g = ( ( ( p x.s F ) +s ( D x.s q ) ) -s ( p x.s q ) ) } u. { h | E. r e. ( _Right ` D ) E. s e. ( _Right ` F ) h = ( ( ( r x.s F ) +s ( D x.s s ) ) -s ( r x.s s ) ) } ) < |
35 |
34
|
adantr |
|- ( ( ph /\ ( ( bday ` C ) e. ( bday ` D ) /\ ( bday ` E ) e. ( bday ` F ) ) ) -> ( { g | E. p e. ( _Left ` D ) E. q e. ( _Left ` F ) g = ( ( ( p x.s F ) +s ( D x.s q ) ) -s ( p x.s q ) ) } u. { h | E. r e. ( _Right ` D ) E. s e. ( _Right ` F ) h = ( ( ( r x.s F ) +s ( D x.s s ) ) -s ( r x.s s ) ) } ) < |
36 |
|
simprl |
|- ( ( ph /\ ( ( bday ` C ) e. ( bday ` D ) /\ ( bday ` E ) e. ( bday ` F ) ) ) -> ( bday ` C ) e. ( bday ` D ) ) |
37 |
|
bdayelon |
|- ( bday ` D ) e. On |
38 |
2
|
adantr |
|- ( ( ph /\ ( ( bday ` C ) e. ( bday ` D ) /\ ( bday ` E ) e. ( bday ` F ) ) ) -> C e. No ) |
39 |
|
oldbday |
|- ( ( ( bday ` D ) e. On /\ C e. No ) -> ( C e. ( _Old ` ( bday ` D ) ) <-> ( bday ` C ) e. ( bday ` D ) ) ) |
40 |
37 38 39
|
sylancr |
|- ( ( ph /\ ( ( bday ` C ) e. ( bday ` D ) /\ ( bday ` E ) e. ( bday ` F ) ) ) -> ( C e. ( _Old ` ( bday ` D ) ) <-> ( bday ` C ) e. ( bday ` D ) ) ) |
41 |
36 40
|
mpbird |
|- ( ( ph /\ ( ( bday ` C ) e. ( bday ` D ) /\ ( bday ` E ) e. ( bday ` F ) ) ) -> C e. ( _Old ` ( bday ` D ) ) ) |
42 |
6
|
adantr |
|- ( ( ph /\ ( ( bday ` C ) e. ( bday ` D ) /\ ( bday ` E ) e. ( bday ` F ) ) ) -> C |
43 |
|
breq1 |
|- ( x = C -> ( x C |
44 |
|
leftval |
|- ( _Left ` D ) = { x e. ( _Old ` ( bday ` D ) ) | x |
45 |
43 44
|
elrab2 |
|- ( C e. ( _Left ` D ) <-> ( C e. ( _Old ` ( bday ` D ) ) /\ C |
46 |
41 42 45
|
sylanbrc |
|- ( ( ph /\ ( ( bday ` C ) e. ( bday ` D ) /\ ( bday ` E ) e. ( bday ` F ) ) ) -> C e. ( _Left ` D ) ) |
47 |
|
simprr |
|- ( ( ph /\ ( ( bday ` C ) e. ( bday ` D ) /\ ( bday ` E ) e. ( bday ` F ) ) ) -> ( bday ` E ) e. ( bday ` F ) ) |
48 |
|
bdayelon |
|- ( bday ` F ) e. On |
49 |
4
|
adantr |
|- ( ( ph /\ ( ( bday ` C ) e. ( bday ` D ) /\ ( bday ` E ) e. ( bday ` F ) ) ) -> E e. No ) |
50 |
|
oldbday |
|- ( ( ( bday ` F ) e. On /\ E e. No ) -> ( E e. ( _Old ` ( bday ` F ) ) <-> ( bday ` E ) e. ( bday ` F ) ) ) |
51 |
48 49 50
|
sylancr |
|- ( ( ph /\ ( ( bday ` C ) e. ( bday ` D ) /\ ( bday ` E ) e. ( bday ` F ) ) ) -> ( E e. ( _Old ` ( bday ` F ) ) <-> ( bday ` E ) e. ( bday ` F ) ) ) |
52 |
47 51
|
mpbird |
|- ( ( ph /\ ( ( bday ` C ) e. ( bday ` D ) /\ ( bday ` E ) e. ( bday ` F ) ) ) -> E e. ( _Old ` ( bday ` F ) ) ) |
53 |
7
|
adantr |
|- ( ( ph /\ ( ( bday ` C ) e. ( bday ` D ) /\ ( bday ` E ) e. ( bday ` F ) ) ) -> E |
54 |
|
breq1 |
|- ( x = E -> ( x E |
55 |
|
leftval |
|- ( _Left ` F ) = { x e. ( _Old ` ( bday ` F ) ) | x |
56 |
54 55
|
elrab2 |
|- ( E e. ( _Left ` F ) <-> ( E e. ( _Old ` ( bday ` F ) ) /\ E |
57 |
52 53 56
|
sylanbrc |
|- ( ( ph /\ ( ( bday ` C ) e. ( bday ` D ) /\ ( bday ` E ) e. ( bday ` F ) ) ) -> E e. ( _Left ` F ) ) |
58 |
|
eqid |
|- ( ( ( C x.s F ) +s ( D x.s E ) ) -s ( C x.s E ) ) = ( ( ( C x.s F ) +s ( D x.s E ) ) -s ( C x.s E ) ) |
59 |
|
oveq1 |
|- ( p = C -> ( p x.s F ) = ( C x.s F ) ) |
60 |
59
|
oveq1d |
|- ( p = C -> ( ( p x.s F ) +s ( D x.s q ) ) = ( ( C x.s F ) +s ( D x.s q ) ) ) |
61 |
|
oveq1 |
|- ( p = C -> ( p x.s q ) = ( C x.s q ) ) |
62 |
60 61
|
oveq12d |
|- ( p = C -> ( ( ( p x.s F ) +s ( D x.s q ) ) -s ( p x.s q ) ) = ( ( ( C x.s F ) +s ( D x.s q ) ) -s ( C x.s q ) ) ) |
63 |
62
|
eqeq2d |
|- ( p = C -> ( ( ( ( C x.s F ) +s ( D x.s E ) ) -s ( C x.s E ) ) = ( ( ( p x.s F ) +s ( D x.s q ) ) -s ( p x.s q ) ) <-> ( ( ( C x.s F ) +s ( D x.s E ) ) -s ( C x.s E ) ) = ( ( ( C x.s F ) +s ( D x.s q ) ) -s ( C x.s q ) ) ) ) |
64 |
|
oveq2 |
|- ( q = E -> ( D x.s q ) = ( D x.s E ) ) |
65 |
64
|
oveq2d |
|- ( q = E -> ( ( C x.s F ) +s ( D x.s q ) ) = ( ( C x.s F ) +s ( D x.s E ) ) ) |
66 |
|
oveq2 |
|- ( q = E -> ( C x.s q ) = ( C x.s E ) ) |
67 |
65 66
|
oveq12d |
|- ( q = E -> ( ( ( C x.s F ) +s ( D x.s q ) ) -s ( C x.s q ) ) = ( ( ( C x.s F ) +s ( D x.s E ) ) -s ( C x.s E ) ) ) |
68 |
67
|
eqeq2d |
|- ( q = E -> ( ( ( ( C x.s F ) +s ( D x.s E ) ) -s ( C x.s E ) ) = ( ( ( C x.s F ) +s ( D x.s q ) ) -s ( C x.s q ) ) <-> ( ( ( C x.s F ) +s ( D x.s E ) ) -s ( C x.s E ) ) = ( ( ( C x.s F ) +s ( D x.s E ) ) -s ( C x.s E ) ) ) ) |
69 |
63 68
|
rspc2ev |
|- ( ( C e. ( _Left ` D ) /\ E e. ( _Left ` F ) /\ ( ( ( C x.s F ) +s ( D x.s E ) ) -s ( C x.s E ) ) = ( ( ( C x.s F ) +s ( D x.s E ) ) -s ( C x.s E ) ) ) -> E. p e. ( _Left ` D ) E. q e. ( _Left ` F ) ( ( ( C x.s F ) +s ( D x.s E ) ) -s ( C x.s E ) ) = ( ( ( p x.s F ) +s ( D x.s q ) ) -s ( p x.s q ) ) ) |
70 |
58 69
|
mp3an3 |
|- ( ( C e. ( _Left ` D ) /\ E e. ( _Left ` F ) ) -> E. p e. ( _Left ` D ) E. q e. ( _Left ` F ) ( ( ( C x.s F ) +s ( D x.s E ) ) -s ( C x.s E ) ) = ( ( ( p x.s F ) +s ( D x.s q ) ) -s ( p x.s q ) ) ) |
71 |
46 57 70
|
syl2anc |
|- ( ( ph /\ ( ( bday ` C ) e. ( bday ` D ) /\ ( bday ` E ) e. ( bday ` F ) ) ) -> E. p e. ( _Left ` D ) E. q e. ( _Left ` F ) ( ( ( C x.s F ) +s ( D x.s E ) ) -s ( C x.s E ) ) = ( ( ( p x.s F ) +s ( D x.s q ) ) -s ( p x.s q ) ) ) |
72 |
|
ovex |
|- ( ( ( C x.s F ) +s ( D x.s E ) ) -s ( C x.s E ) ) e. _V |
73 |
|
eqeq1 |
|- ( g = ( ( ( C x.s F ) +s ( D x.s E ) ) -s ( C x.s E ) ) -> ( g = ( ( ( p x.s F ) +s ( D x.s q ) ) -s ( p x.s q ) ) <-> ( ( ( C x.s F ) +s ( D x.s E ) ) -s ( C x.s E ) ) = ( ( ( p x.s F ) +s ( D x.s q ) ) -s ( p x.s q ) ) ) ) |
74 |
73
|
2rexbidv |
|- ( g = ( ( ( C x.s F ) +s ( D x.s E ) ) -s ( C x.s E ) ) -> ( E. p e. ( _Left ` D ) E. q e. ( _Left ` F ) g = ( ( ( p x.s F ) +s ( D x.s q ) ) -s ( p x.s q ) ) <-> E. p e. ( _Left ` D ) E. q e. ( _Left ` F ) ( ( ( C x.s F ) +s ( D x.s E ) ) -s ( C x.s E ) ) = ( ( ( p x.s F ) +s ( D x.s q ) ) -s ( p x.s q ) ) ) ) |
75 |
72 74
|
elab |
|- ( ( ( ( C x.s F ) +s ( D x.s E ) ) -s ( C x.s E ) ) e. { g | E. p e. ( _Left ` D ) E. q e. ( _Left ` F ) g = ( ( ( p x.s F ) +s ( D x.s q ) ) -s ( p x.s q ) ) } <-> E. p e. ( _Left ` D ) E. q e. ( _Left ` F ) ( ( ( C x.s F ) +s ( D x.s E ) ) -s ( C x.s E ) ) = ( ( ( p x.s F ) +s ( D x.s q ) ) -s ( p x.s q ) ) ) |
76 |
71 75
|
sylibr |
|- ( ( ph /\ ( ( bday ` C ) e. ( bday ` D ) /\ ( bday ` E ) e. ( bday ` F ) ) ) -> ( ( ( C x.s F ) +s ( D x.s E ) ) -s ( C x.s E ) ) e. { g | E. p e. ( _Left ` D ) E. q e. ( _Left ` F ) g = ( ( ( p x.s F ) +s ( D x.s q ) ) -s ( p x.s q ) ) } ) |
77 |
|
elun1 |
|- ( ( ( ( C x.s F ) +s ( D x.s E ) ) -s ( C x.s E ) ) e. { g | E. p e. ( _Left ` D ) E. q e. ( _Left ` F ) g = ( ( ( p x.s F ) +s ( D x.s q ) ) -s ( p x.s q ) ) } -> ( ( ( C x.s F ) +s ( D x.s E ) ) -s ( C x.s E ) ) e. ( { g | E. p e. ( _Left ` D ) E. q e. ( _Left ` F ) g = ( ( ( p x.s F ) +s ( D x.s q ) ) -s ( p x.s q ) ) } u. { h | E. r e. ( _Right ` D ) E. s e. ( _Right ` F ) h = ( ( ( r x.s F ) +s ( D x.s s ) ) -s ( r x.s s ) ) } ) ) |
78 |
76 77
|
syl |
|- ( ( ph /\ ( ( bday ` C ) e. ( bday ` D ) /\ ( bday ` E ) e. ( bday ` F ) ) ) -> ( ( ( C x.s F ) +s ( D x.s E ) ) -s ( C x.s E ) ) e. ( { g | E. p e. ( _Left ` D ) E. q e. ( _Left ` F ) g = ( ( ( p x.s F ) +s ( D x.s q ) ) -s ( p x.s q ) ) } u. { h | E. r e. ( _Right ` D ) E. s e. ( _Right ` F ) h = ( ( ( r x.s F ) +s ( D x.s s ) ) -s ( r x.s s ) ) } ) ) |
79 |
|
ovex |
|- ( D x.s F ) e. _V |
80 |
79
|
snid |
|- ( D x.s F ) e. { ( D x.s F ) } |
81 |
80
|
a1i |
|- ( ( ph /\ ( ( bday ` C ) e. ( bday ` D ) /\ ( bday ` E ) e. ( bday ` F ) ) ) -> ( D x.s F ) e. { ( D x.s F ) } ) |
82 |
35 78 81
|
ssltsepcd |
|- ( ( ph /\ ( ( bday ` C ) e. ( bday ` D ) /\ ( bday ` E ) e. ( bday ` F ) ) ) -> ( ( ( C x.s F ) +s ( D x.s E ) ) -s ( C x.s E ) ) |
83 |
19
|
uneq2i |
|- ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) u. ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) ) ) = ( ( ( bday ` C ) +no ( bday ` F ) ) u. (/) ) |
84 |
|
un0 |
|- ( ( ( bday ` C ) +no ( bday ` F ) ) u. (/) ) = ( ( bday ` C ) +no ( bday ` F ) ) |
85 |
83 84
|
eqtri |
|- ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) u. ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) ) ) = ( ( bday ` C ) +no ( bday ` F ) ) |
86 |
|
ssun1 |
|- ( ( bday ` C ) +no ( bday ` F ) ) C_ ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) |
87 |
|
ssun2 |
|- ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) C_ ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) |
88 |
86 87
|
sstri |
|- ( ( bday ` C ) +no ( bday ` F ) ) C_ ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) |
89 |
88 26
|
sstri |
|- ( ( bday ` C ) +no ( bday ` F ) ) C_ ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) |
90 |
85 89
|
eqsstri |
|- ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) u. ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) ) ) C_ ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) |
91 |
90
|
sseli |
|- ( ( ( ( bday ` a ) +no ( bday ` b ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) u. ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) ) ) -> ( ( ( bday ` a ) +no ( bday ` b ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) ) |
92 |
91
|
imim1i |
|- ( ( ( ( ( bday ` a ) +no ( bday ` b ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) -> ( ( a x.s b ) e. No /\ ( ( c ( ( c x.s f ) -s ( c x.s e ) ) ( ( ( ( bday ` a ) +no ( bday ` b ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) u. ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) ) ) -> ( ( a x.s b ) e. No /\ ( ( c ( ( c x.s f ) -s ( c x.s e ) ) |
93 |
92
|
6ralimi |
|- ( A. a e. No A. b e. No A. c e. No A. d e. No A. e e. No A. f e. No ( ( ( ( bday ` a ) +no ( bday ` b ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) -> ( ( a x.s b ) e. No /\ ( ( c ( ( c x.s f ) -s ( c x.s e ) ) A. a e. No A. b e. No A. c e. No A. d e. No A. e e. No A. f e. No ( ( ( ( bday ` a ) +no ( bday ` b ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) u. ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) ) ) -> ( ( a x.s b ) e. No /\ ( ( c ( ( c x.s f ) -s ( c x.s e ) ) |
94 |
1 93
|
syl |
|- ( ph -> A. a e. No A. b e. No A. c e. No A. d e. No A. e e. No A. f e. No ( ( ( ( bday ` a ) +no ( bday ` b ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) u. ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) ) ) -> ( ( a x.s b ) e. No /\ ( ( c ( ( c x.s f ) -s ( c x.s e ) ) |
95 |
94 2 5
|
mulsproplem10 |
|- ( ph -> ( ( C x.s F ) e. No /\ ( { g | E. p e. ( _Left ` C ) E. q e. ( _Left ` F ) g = ( ( ( p x.s F ) +s ( C x.s q ) ) -s ( p x.s q ) ) } u. { h | E. r e. ( _Right ` C ) E. s e. ( _Right ` F ) h = ( ( ( r x.s F ) +s ( C x.s s ) ) -s ( r x.s s ) ) } ) < |
96 |
95
|
simp1d |
|- ( ph -> ( C x.s F ) e. No ) |
97 |
19
|
uneq2i |
|- ( ( ( bday ` D ) +no ( bday ` E ) ) u. ( ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) u. ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) ) ) = ( ( ( bday ` D ) +no ( bday ` E ) ) u. (/) ) |
98 |
|
un0 |
|- ( ( ( bday ` D ) +no ( bday ` E ) ) u. (/) ) = ( ( bday ` D ) +no ( bday ` E ) ) |
99 |
97 98
|
eqtri |
|- ( ( ( bday ` D ) +no ( bday ` E ) ) u. ( ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) u. ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) ) ) = ( ( bday ` D ) +no ( bday ` E ) ) |
100 |
|
ssun2 |
|- ( ( bday ` D ) +no ( bday ` E ) ) C_ ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) |
101 |
100 87
|
sstri |
|- ( ( bday ` D ) +no ( bday ` E ) ) C_ ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) |
102 |
101 26
|
sstri |
|- ( ( bday ` D ) +no ( bday ` E ) ) C_ ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) |
103 |
99 102
|
eqsstri |
|- ( ( ( bday ` D ) +no ( bday ` E ) ) u. ( ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) u. ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) ) ) C_ ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) |
104 |
103
|
sseli |
|- ( ( ( ( bday ` a ) +no ( bday ` b ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` D ) +no ( bday ` E ) ) u. ( ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) u. ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) ) ) -> ( ( ( bday ` a ) +no ( bday ` b ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) ) |
105 |
104
|
imim1i |
|- ( ( ( ( ( bday ` a ) +no ( bday ` b ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) -> ( ( a x.s b ) e. No /\ ( ( c ( ( c x.s f ) -s ( c x.s e ) ) ( ( ( ( bday ` a ) +no ( bday ` b ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` D ) +no ( bday ` E ) ) u. ( ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) u. ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) ) ) -> ( ( a x.s b ) e. No /\ ( ( c ( ( c x.s f ) -s ( c x.s e ) ) |
106 |
105
|
6ralimi |
|- ( A. a e. No A. b e. No A. c e. No A. d e. No A. e e. No A. f e. No ( ( ( ( bday ` a ) +no ( bday ` b ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) -> ( ( a x.s b ) e. No /\ ( ( c ( ( c x.s f ) -s ( c x.s e ) ) A. a e. No A. b e. No A. c e. No A. d e. No A. e e. No A. f e. No ( ( ( ( bday ` a ) +no ( bday ` b ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` D ) +no ( bday ` E ) ) u. ( ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) u. ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) ) ) -> ( ( a x.s b ) e. No /\ ( ( c ( ( c x.s f ) -s ( c x.s e ) ) |
107 |
1 106
|
syl |
|- ( ph -> A. a e. No A. b e. No A. c e. No A. d e. No A. e e. No A. f e. No ( ( ( ( bday ` a ) +no ( bday ` b ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` D ) +no ( bday ` E ) ) u. ( ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) u. ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) ) ) -> ( ( a x.s b ) e. No /\ ( ( c ( ( c x.s f ) -s ( c x.s e ) ) |
108 |
107 3 4
|
mulsproplem10 |
|- ( ph -> ( ( D x.s E ) e. No /\ ( { g | E. p e. ( _Left ` D ) E. q e. ( _Left ` E ) g = ( ( ( p x.s E ) +s ( D x.s q ) ) -s ( p x.s q ) ) } u. { h | E. r e. ( _Right ` D ) E. s e. ( _Right ` E ) h = ( ( ( r x.s E ) +s ( D x.s s ) ) -s ( r x.s s ) ) } ) < |
109 |
108
|
simp1d |
|- ( ph -> ( D x.s E ) e. No ) |
110 |
96 109
|
addscomd |
|- ( ph -> ( ( C x.s F ) +s ( D x.s E ) ) = ( ( D x.s E ) +s ( C x.s F ) ) ) |
111 |
110
|
oveq1d |
|- ( ph -> ( ( ( C x.s F ) +s ( D x.s E ) ) -s ( C x.s E ) ) = ( ( ( D x.s E ) +s ( C x.s F ) ) -s ( C x.s E ) ) ) |
112 |
19
|
uneq2i |
|- ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) u. ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) ) ) = ( ( ( bday ` C ) +no ( bday ` E ) ) u. (/) ) |
113 |
|
un0 |
|- ( ( ( bday ` C ) +no ( bday ` E ) ) u. (/) ) = ( ( bday ` C ) +no ( bday ` E ) ) |
114 |
112 113
|
eqtri |
|- ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) u. ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) ) ) = ( ( bday ` C ) +no ( bday ` E ) ) |
115 |
|
ssun1 |
|- ( ( bday ` C ) +no ( bday ` E ) ) C_ ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) |
116 |
115 24
|
sstri |
|- ( ( bday ` C ) +no ( bday ` E ) ) C_ ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) |
117 |
116 26
|
sstri |
|- ( ( bday ` C ) +no ( bday ` E ) ) C_ ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) |
118 |
114 117
|
eqsstri |
|- ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) u. ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) ) ) C_ ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) |
119 |
118
|
sseli |
|- ( ( ( ( bday ` a ) +no ( bday ` b ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) u. ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) ) ) -> ( ( ( bday ` a ) +no ( bday ` b ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) ) |
120 |
119
|
imim1i |
|- ( ( ( ( ( bday ` a ) +no ( bday ` b ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) -> ( ( a x.s b ) e. No /\ ( ( c ( ( c x.s f ) -s ( c x.s e ) ) ( ( ( ( bday ` a ) +no ( bday ` b ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) u. ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) ) ) -> ( ( a x.s b ) e. No /\ ( ( c ( ( c x.s f ) -s ( c x.s e ) ) |
121 |
120
|
6ralimi |
|- ( A. a e. No A. b e. No A. c e. No A. d e. No A. e e. No A. f e. No ( ( ( ( bday ` a ) +no ( bday ` b ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) -> ( ( a x.s b ) e. No /\ ( ( c ( ( c x.s f ) -s ( c x.s e ) ) A. a e. No A. b e. No A. c e. No A. d e. No A. e e. No A. f e. No ( ( ( ( bday ` a ) +no ( bday ` b ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) u. ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) ) ) -> ( ( a x.s b ) e. No /\ ( ( c ( ( c x.s f ) -s ( c x.s e ) ) |
122 |
1 121
|
syl |
|- ( ph -> A. a e. No A. b e. No A. c e. No A. d e. No A. e e. No A. f e. No ( ( ( ( bday ` a ) +no ( bday ` b ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) u. ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( bday ` 0s ) +no ( bday ` 0s ) ) ) ) ) -> ( ( a x.s b ) e. No /\ ( ( c ( ( c x.s f ) -s ( c x.s e ) ) |
123 |
122 2 4
|
mulsproplem10 |
|- ( ph -> ( ( C x.s E ) e. No /\ ( { g | E. p e. ( _Left ` C ) E. q e. ( _Left ` E ) g = ( ( ( p x.s E ) +s ( C x.s q ) ) -s ( p x.s q ) ) } u. { h | E. r e. ( _Right ` C ) E. s e. ( _Right ` E ) h = ( ( ( r x.s E ) +s ( C x.s s ) ) -s ( r x.s s ) ) } ) < |
124 |
123
|
simp1d |
|- ( ph -> ( C x.s E ) e. No ) |
125 |
109 96 124
|
addsubsassd |
|- ( ph -> ( ( ( D x.s E ) +s ( C x.s F ) ) -s ( C x.s E ) ) = ( ( D x.s E ) +s ( ( C x.s F ) -s ( C x.s E ) ) ) ) |
126 |
111 125
|
eqtrd |
|- ( ph -> ( ( ( C x.s F ) +s ( D x.s E ) ) -s ( C x.s E ) ) = ( ( D x.s E ) +s ( ( C x.s F ) -s ( C x.s E ) ) ) ) |
127 |
126
|
breq1d |
|- ( ph -> ( ( ( ( C x.s F ) +s ( D x.s E ) ) -s ( C x.s E ) ) ( ( D x.s E ) +s ( ( C x.s F ) -s ( C x.s E ) ) ) |
128 |
96 124
|
subscld |
|- ( ph -> ( ( C x.s F ) -s ( C x.s E ) ) e. No ) |
129 |
33
|
simp1d |
|- ( ph -> ( D x.s F ) e. No ) |
130 |
109 128 129
|
sltaddsub2d |
|- ( ph -> ( ( ( D x.s E ) +s ( ( C x.s F ) -s ( C x.s E ) ) ) ( ( C x.s F ) -s ( C x.s E ) ) |
131 |
127 130
|
bitrd |
|- ( ph -> ( ( ( ( C x.s F ) +s ( D x.s E ) ) -s ( C x.s E ) ) ( ( C x.s F ) -s ( C x.s E ) ) |
132 |
131
|
adantr |
|- ( ( ph /\ ( ( bday ` C ) e. ( bday ` D ) /\ ( bday ` E ) e. ( bday ` F ) ) ) -> ( ( ( ( C x.s F ) +s ( D x.s E ) ) -s ( C x.s E ) ) ( ( C x.s F ) -s ( C x.s E ) ) |
133 |
82 132
|
mpbid |
|- ( ( ph /\ ( ( bday ` C ) e. ( bday ` D ) /\ ( bday ` E ) e. ( bday ` F ) ) ) -> ( ( C x.s F ) -s ( C x.s E ) ) |
134 |
133
|
anassrs |
|- ( ( ( ph /\ ( bday ` C ) e. ( bday ` D ) ) /\ ( bday ` E ) e. ( bday ` F ) ) -> ( ( C x.s F ) -s ( C x.s E ) ) |
135 |
108
|
simp3d |
|- ( ph -> { ( D x.s E ) } < |
136 |
135
|
adantr |
|- ( ( ph /\ ( ( bday ` C ) e. ( bday ` D ) /\ ( bday ` F ) e. ( bday ` E ) ) ) -> { ( D x.s E ) } < |
137 |
|
ovex |
|- ( D x.s E ) e. _V |
138 |
137
|
snid |
|- ( D x.s E ) e. { ( D x.s E ) } |
139 |
138
|
a1i |
|- ( ( ph /\ ( ( bday ` C ) e. ( bday ` D ) /\ ( bday ` F ) e. ( bday ` E ) ) ) -> ( D x.s E ) e. { ( D x.s E ) } ) |
140 |
|
simprl |
|- ( ( ph /\ ( ( bday ` C ) e. ( bday ` D ) /\ ( bday ` F ) e. ( bday ` E ) ) ) -> ( bday ` C ) e. ( bday ` D ) ) |
141 |
2
|
adantr |
|- ( ( ph /\ ( ( bday ` C ) e. ( bday ` D ) /\ ( bday ` F ) e. ( bday ` E ) ) ) -> C e. No ) |
142 |
37 141 39
|
sylancr |
|- ( ( ph /\ ( ( bday ` C ) e. ( bday ` D ) /\ ( bday ` F ) e. ( bday ` E ) ) ) -> ( C e. ( _Old ` ( bday ` D ) ) <-> ( bday ` C ) e. ( bday ` D ) ) ) |
143 |
140 142
|
mpbird |
|- ( ( ph /\ ( ( bday ` C ) e. ( bday ` D ) /\ ( bday ` F ) e. ( bday ` E ) ) ) -> C e. ( _Old ` ( bday ` D ) ) ) |
144 |
6
|
adantr |
|- ( ( ph /\ ( ( bday ` C ) e. ( bday ` D ) /\ ( bday ` F ) e. ( bday ` E ) ) ) -> C |
145 |
143 144 45
|
sylanbrc |
|- ( ( ph /\ ( ( bday ` C ) e. ( bday ` D ) /\ ( bday ` F ) e. ( bday ` E ) ) ) -> C e. ( _Left ` D ) ) |
146 |
|
simprr |
|- ( ( ph /\ ( ( bday ` C ) e. ( bday ` D ) /\ ( bday ` F ) e. ( bday ` E ) ) ) -> ( bday ` F ) e. ( bday ` E ) ) |
147 |
|
bdayelon |
|- ( bday ` E ) e. On |
148 |
5
|
adantr |
|- ( ( ph /\ ( ( bday ` C ) e. ( bday ` D ) /\ ( bday ` F ) e. ( bday ` E ) ) ) -> F e. No ) |
149 |
|
oldbday |
|- ( ( ( bday ` E ) e. On /\ F e. No ) -> ( F e. ( _Old ` ( bday ` E ) ) <-> ( bday ` F ) e. ( bday ` E ) ) ) |
150 |
147 148 149
|
sylancr |
|- ( ( ph /\ ( ( bday ` C ) e. ( bday ` D ) /\ ( bday ` F ) e. ( bday ` E ) ) ) -> ( F e. ( _Old ` ( bday ` E ) ) <-> ( bday ` F ) e. ( bday ` E ) ) ) |
151 |
146 150
|
mpbird |
|- ( ( ph /\ ( ( bday ` C ) e. ( bday ` D ) /\ ( bday ` F ) e. ( bday ` E ) ) ) -> F e. ( _Old ` ( bday ` E ) ) ) |
152 |
7
|
adantr |
|- ( ( ph /\ ( ( bday ` C ) e. ( bday ` D ) /\ ( bday ` F ) e. ( bday ` E ) ) ) -> E |
153 |
|
breq2 |
|- ( x = F -> ( E E |
154 |
|
rightval |
|- ( _Right ` E ) = { x e. ( _Old ` ( bday ` E ) ) | E |
155 |
153 154
|
elrab2 |
|- ( F e. ( _Right ` E ) <-> ( F e. ( _Old ` ( bday ` E ) ) /\ E |
156 |
151 152 155
|
sylanbrc |
|- ( ( ph /\ ( ( bday ` C ) e. ( bday ` D ) /\ ( bday ` F ) e. ( bday ` E ) ) ) -> F e. ( _Right ` E ) ) |
157 |
|
eqid |
|- ( ( ( C x.s E ) +s ( D x.s F ) ) -s ( C x.s F ) ) = ( ( ( C x.s E ) +s ( D x.s F ) ) -s ( C x.s F ) ) |
158 |
|
oveq1 |
|- ( t = C -> ( t x.s E ) = ( C x.s E ) ) |
159 |
158
|
oveq1d |
|- ( t = C -> ( ( t x.s E ) +s ( D x.s u ) ) = ( ( C x.s E ) +s ( D x.s u ) ) ) |
160 |
|
oveq1 |
|- ( t = C -> ( t x.s u ) = ( C x.s u ) ) |
161 |
159 160
|
oveq12d |
|- ( t = C -> ( ( ( t x.s E ) +s ( D x.s u ) ) -s ( t x.s u ) ) = ( ( ( C x.s E ) +s ( D x.s u ) ) -s ( C x.s u ) ) ) |
162 |
161
|
eqeq2d |
|- ( t = C -> ( ( ( ( C x.s E ) +s ( D x.s F ) ) -s ( C x.s F ) ) = ( ( ( t x.s E ) +s ( D x.s u ) ) -s ( t x.s u ) ) <-> ( ( ( C x.s E ) +s ( D x.s F ) ) -s ( C x.s F ) ) = ( ( ( C x.s E ) +s ( D x.s u ) ) -s ( C x.s u ) ) ) ) |
163 |
|
oveq2 |
|- ( u = F -> ( D x.s u ) = ( D x.s F ) ) |
164 |
163
|
oveq2d |
|- ( u = F -> ( ( C x.s E ) +s ( D x.s u ) ) = ( ( C x.s E ) +s ( D x.s F ) ) ) |
165 |
|
oveq2 |
|- ( u = F -> ( C x.s u ) = ( C x.s F ) ) |
166 |
164 165
|
oveq12d |
|- ( u = F -> ( ( ( C x.s E ) +s ( D x.s u ) ) -s ( C x.s u ) ) = ( ( ( C x.s E ) +s ( D x.s F ) ) -s ( C x.s F ) ) ) |
167 |
166
|
eqeq2d |
|- ( u = F -> ( ( ( ( C x.s E ) +s ( D x.s F ) ) -s ( C x.s F ) ) = ( ( ( C x.s E ) +s ( D x.s u ) ) -s ( C x.s u ) ) <-> ( ( ( C x.s E ) +s ( D x.s F ) ) -s ( C x.s F ) ) = ( ( ( C x.s E ) +s ( D x.s F ) ) -s ( C x.s F ) ) ) ) |
168 |
162 167
|
rspc2ev |
|- ( ( C e. ( _Left ` D ) /\ F e. ( _Right ` E ) /\ ( ( ( C x.s E ) +s ( D x.s F ) ) -s ( C x.s F ) ) = ( ( ( C x.s E ) +s ( D x.s F ) ) -s ( C x.s F ) ) ) -> E. t e. ( _Left ` D ) E. u e. ( _Right ` E ) ( ( ( C x.s E ) +s ( D x.s F ) ) -s ( C x.s F ) ) = ( ( ( t x.s E ) +s ( D x.s u ) ) -s ( t x.s u ) ) ) |
169 |
157 168
|
mp3an3 |
|- ( ( C e. ( _Left ` D ) /\ F e. ( _Right ` E ) ) -> E. t e. ( _Left ` D ) E. u e. ( _Right ` E ) ( ( ( C x.s E ) +s ( D x.s F ) ) -s ( C x.s F ) ) = ( ( ( t x.s E ) +s ( D x.s u ) ) -s ( t x.s u ) ) ) |
170 |
145 156 169
|
syl2anc |
|- ( ( ph /\ ( ( bday ` C ) e. ( bday ` D ) /\ ( bday ` F ) e. ( bday ` E ) ) ) -> E. t e. ( _Left ` D ) E. u e. ( _Right ` E ) ( ( ( C x.s E ) +s ( D x.s F ) ) -s ( C x.s F ) ) = ( ( ( t x.s E ) +s ( D x.s u ) ) -s ( t x.s u ) ) ) |
171 |
|
ovex |
|- ( ( ( C x.s E ) +s ( D x.s F ) ) -s ( C x.s F ) ) e. _V |
172 |
|
eqeq1 |
|- ( i = ( ( ( C x.s E ) +s ( D x.s F ) ) -s ( C x.s F ) ) -> ( i = ( ( ( t x.s E ) +s ( D x.s u ) ) -s ( t x.s u ) ) <-> ( ( ( C x.s E ) +s ( D x.s F ) ) -s ( C x.s F ) ) = ( ( ( t x.s E ) +s ( D x.s u ) ) -s ( t x.s u ) ) ) ) |
173 |
172
|
2rexbidv |
|- ( i = ( ( ( C x.s E ) +s ( D x.s F ) ) -s ( C x.s F ) ) -> ( E. t e. ( _Left ` D ) E. u e. ( _Right ` E ) i = ( ( ( t x.s E ) +s ( D x.s u ) ) -s ( t x.s u ) ) <-> E. t e. ( _Left ` D ) E. u e. ( _Right ` E ) ( ( ( C x.s E ) +s ( D x.s F ) ) -s ( C x.s F ) ) = ( ( ( t x.s E ) +s ( D x.s u ) ) -s ( t x.s u ) ) ) ) |
174 |
171 173
|
elab |
|- ( ( ( ( C x.s E ) +s ( D x.s F ) ) -s ( C x.s F ) ) e. { i | E. t e. ( _Left ` D ) E. u e. ( _Right ` E ) i = ( ( ( t x.s E ) +s ( D x.s u ) ) -s ( t x.s u ) ) } <-> E. t e. ( _Left ` D ) E. u e. ( _Right ` E ) ( ( ( C x.s E ) +s ( D x.s F ) ) -s ( C x.s F ) ) = ( ( ( t x.s E ) +s ( D x.s u ) ) -s ( t x.s u ) ) ) |
175 |
170 174
|
sylibr |
|- ( ( ph /\ ( ( bday ` C ) e. ( bday ` D ) /\ ( bday ` F ) e. ( bday ` E ) ) ) -> ( ( ( C x.s E ) +s ( D x.s F ) ) -s ( C x.s F ) ) e. { i | E. t e. ( _Left ` D ) E. u e. ( _Right ` E ) i = ( ( ( t x.s E ) +s ( D x.s u ) ) -s ( t x.s u ) ) } ) |
176 |
|
elun1 |
|- ( ( ( ( C x.s E ) +s ( D x.s F ) ) -s ( C x.s F ) ) e. { i | E. t e. ( _Left ` D ) E. u e. ( _Right ` E ) i = ( ( ( t x.s E ) +s ( D x.s u ) ) -s ( t x.s u ) ) } -> ( ( ( C x.s E ) +s ( D x.s F ) ) -s ( C x.s F ) ) e. ( { i | E. t e. ( _Left ` D ) E. u e. ( _Right ` E ) i = ( ( ( t x.s E ) +s ( D x.s u ) ) -s ( t x.s u ) ) } u. { j | E. v e. ( _Right ` D ) E. w e. ( _Left ` E ) j = ( ( ( v x.s E ) +s ( D x.s w ) ) -s ( v x.s w ) ) } ) ) |
177 |
175 176
|
syl |
|- ( ( ph /\ ( ( bday ` C ) e. ( bday ` D ) /\ ( bday ` F ) e. ( bday ` E ) ) ) -> ( ( ( C x.s E ) +s ( D x.s F ) ) -s ( C x.s F ) ) e. ( { i | E. t e. ( _Left ` D ) E. u e. ( _Right ` E ) i = ( ( ( t x.s E ) +s ( D x.s u ) ) -s ( t x.s u ) ) } u. { j | E. v e. ( _Right ` D ) E. w e. ( _Left ` E ) j = ( ( ( v x.s E ) +s ( D x.s w ) ) -s ( v x.s w ) ) } ) ) |
178 |
136 139 177
|
ssltsepcd |
|- ( ( ph /\ ( ( bday ` C ) e. ( bday ` D ) /\ ( bday ` F ) e. ( bday ` E ) ) ) -> ( D x.s E ) |
179 |
124 129
|
addscomd |
|- ( ph -> ( ( C x.s E ) +s ( D x.s F ) ) = ( ( D x.s F ) +s ( C x.s E ) ) ) |
180 |
179
|
oveq1d |
|- ( ph -> ( ( ( C x.s E ) +s ( D x.s F ) ) -s ( C x.s F ) ) = ( ( ( D x.s F ) +s ( C x.s E ) ) -s ( C x.s F ) ) ) |
181 |
129 124 96
|
addsubsassd |
|- ( ph -> ( ( ( D x.s F ) +s ( C x.s E ) ) -s ( C x.s F ) ) = ( ( D x.s F ) +s ( ( C x.s E ) -s ( C x.s F ) ) ) ) |
182 |
180 181
|
eqtrd |
|- ( ph -> ( ( ( C x.s E ) +s ( D x.s F ) ) -s ( C x.s F ) ) = ( ( D x.s F ) +s ( ( C x.s E ) -s ( C x.s F ) ) ) ) |
183 |
182
|
breq2d |
|- ( ph -> ( ( D x.s E ) ( D x.s E ) |
184 |
124 96
|
subscld |
|- ( ph -> ( ( C x.s E ) -s ( C x.s F ) ) e. No ) |
185 |
109 129 184
|
sltsubadd2d |
|- ( ph -> ( ( ( D x.s E ) -s ( D x.s F ) ) ( D x.s E ) |
186 |
183 185
|
bitr4d |
|- ( ph -> ( ( D x.s E ) ( ( D x.s E ) -s ( D x.s F ) ) |
187 |
109 129 124 96
|
sltsubsub2bd |
|- ( ph -> ( ( ( D x.s E ) -s ( D x.s F ) ) ( ( C x.s F ) -s ( C x.s E ) ) |
188 |
186 187
|
bitrd |
|- ( ph -> ( ( D x.s E ) ( ( C x.s F ) -s ( C x.s E ) ) |
189 |
188
|
adantr |
|- ( ( ph /\ ( ( bday ` C ) e. ( bday ` D ) /\ ( bday ` F ) e. ( bday ` E ) ) ) -> ( ( D x.s E ) ( ( C x.s F ) -s ( C x.s E ) ) |
190 |
178 189
|
mpbid |
|- ( ( ph /\ ( ( bday ` C ) e. ( bday ` D ) /\ ( bday ` F ) e. ( bday ` E ) ) ) -> ( ( C x.s F ) -s ( C x.s E ) ) |
191 |
190
|
anassrs |
|- ( ( ( ph /\ ( bday ` C ) e. ( bday ` D ) ) /\ ( bday ` F ) e. ( bday ` E ) ) -> ( ( C x.s F ) -s ( C x.s E ) ) |
192 |
9
|
adantr |
|- ( ( ph /\ ( bday ` C ) e. ( bday ` D ) ) -> ( ( bday ` E ) e. ( bday ` F ) \/ ( bday ` F ) e. ( bday ` E ) ) ) |
193 |
134 191 192
|
mpjaodan |
|- ( ( ph /\ ( bday ` C ) e. ( bday ` D ) ) -> ( ( C x.s F ) -s ( C x.s E ) ) |
194 |
95
|
simp3d |
|- ( ph -> { ( C x.s F ) } < |
195 |
194
|
adantr |
|- ( ( ph /\ ( ( bday ` D ) e. ( bday ` C ) /\ ( bday ` E ) e. ( bday ` F ) ) ) -> { ( C x.s F ) } < |
196 |
|
ovex |
|- ( C x.s F ) e. _V |
197 |
196
|
snid |
|- ( C x.s F ) e. { ( C x.s F ) } |
198 |
197
|
a1i |
|- ( ( ph /\ ( ( bday ` D ) e. ( bday ` C ) /\ ( bday ` E ) e. ( bday ` F ) ) ) -> ( C x.s F ) e. { ( C x.s F ) } ) |
199 |
|
simprl |
|- ( ( ph /\ ( ( bday ` D ) e. ( bday ` C ) /\ ( bday ` E ) e. ( bday ` F ) ) ) -> ( bday ` D ) e. ( bday ` C ) ) |
200 |
|
bdayelon |
|- ( bday ` C ) e. On |
201 |
3
|
adantr |
|- ( ( ph /\ ( ( bday ` D ) e. ( bday ` C ) /\ ( bday ` E ) e. ( bday ` F ) ) ) -> D e. No ) |
202 |
|
oldbday |
|- ( ( ( bday ` C ) e. On /\ D e. No ) -> ( D e. ( _Old ` ( bday ` C ) ) <-> ( bday ` D ) e. ( bday ` C ) ) ) |
203 |
200 201 202
|
sylancr |
|- ( ( ph /\ ( ( bday ` D ) e. ( bday ` C ) /\ ( bday ` E ) e. ( bday ` F ) ) ) -> ( D e. ( _Old ` ( bday ` C ) ) <-> ( bday ` D ) e. ( bday ` C ) ) ) |
204 |
199 203
|
mpbird |
|- ( ( ph /\ ( ( bday ` D ) e. ( bday ` C ) /\ ( bday ` E ) e. ( bday ` F ) ) ) -> D e. ( _Old ` ( bday ` C ) ) ) |
205 |
6
|
adantr |
|- ( ( ph /\ ( ( bday ` D ) e. ( bday ` C ) /\ ( bday ` E ) e. ( bday ` F ) ) ) -> C |
206 |
|
breq2 |
|- ( x = D -> ( C C |
207 |
|
rightval |
|- ( _Right ` C ) = { x e. ( _Old ` ( bday ` C ) ) | C |
208 |
206 207
|
elrab2 |
|- ( D e. ( _Right ` C ) <-> ( D e. ( _Old ` ( bday ` C ) ) /\ C |
209 |
204 205 208
|
sylanbrc |
|- ( ( ph /\ ( ( bday ` D ) e. ( bday ` C ) /\ ( bday ` E ) e. ( bday ` F ) ) ) -> D e. ( _Right ` C ) ) |
210 |
|
simprr |
|- ( ( ph /\ ( ( bday ` D ) e. ( bday ` C ) /\ ( bday ` E ) e. ( bday ` F ) ) ) -> ( bday ` E ) e. ( bday ` F ) ) |
211 |
4
|
adantr |
|- ( ( ph /\ ( ( bday ` D ) e. ( bday ` C ) /\ ( bday ` E ) e. ( bday ` F ) ) ) -> E e. No ) |
212 |
48 211 50
|
sylancr |
|- ( ( ph /\ ( ( bday ` D ) e. ( bday ` C ) /\ ( bday ` E ) e. ( bday ` F ) ) ) -> ( E e. ( _Old ` ( bday ` F ) ) <-> ( bday ` E ) e. ( bday ` F ) ) ) |
213 |
210 212
|
mpbird |
|- ( ( ph /\ ( ( bday ` D ) e. ( bday ` C ) /\ ( bday ` E ) e. ( bday ` F ) ) ) -> E e. ( _Old ` ( bday ` F ) ) ) |
214 |
7
|
adantr |
|- ( ( ph /\ ( ( bday ` D ) e. ( bday ` C ) /\ ( bday ` E ) e. ( bday ` F ) ) ) -> E |
215 |
213 214 56
|
sylanbrc |
|- ( ( ph /\ ( ( bday ` D ) e. ( bday ` C ) /\ ( bday ` E ) e. ( bday ` F ) ) ) -> E e. ( _Left ` F ) ) |
216 |
|
eqid |
|- ( ( ( D x.s F ) +s ( C x.s E ) ) -s ( D x.s E ) ) = ( ( ( D x.s F ) +s ( C x.s E ) ) -s ( D x.s E ) ) |
217 |
|
oveq1 |
|- ( v = D -> ( v x.s F ) = ( D x.s F ) ) |
218 |
217
|
oveq1d |
|- ( v = D -> ( ( v x.s F ) +s ( C x.s w ) ) = ( ( D x.s F ) +s ( C x.s w ) ) ) |
219 |
|
oveq1 |
|- ( v = D -> ( v x.s w ) = ( D x.s w ) ) |
220 |
218 219
|
oveq12d |
|- ( v = D -> ( ( ( v x.s F ) +s ( C x.s w ) ) -s ( v x.s w ) ) = ( ( ( D x.s F ) +s ( C x.s w ) ) -s ( D x.s w ) ) ) |
221 |
220
|
eqeq2d |
|- ( v = D -> ( ( ( ( D x.s F ) +s ( C x.s E ) ) -s ( D x.s E ) ) = ( ( ( v x.s F ) +s ( C x.s w ) ) -s ( v x.s w ) ) <-> ( ( ( D x.s F ) +s ( C x.s E ) ) -s ( D x.s E ) ) = ( ( ( D x.s F ) +s ( C x.s w ) ) -s ( D x.s w ) ) ) ) |
222 |
|
oveq2 |
|- ( w = E -> ( C x.s w ) = ( C x.s E ) ) |
223 |
222
|
oveq2d |
|- ( w = E -> ( ( D x.s F ) +s ( C x.s w ) ) = ( ( D x.s F ) +s ( C x.s E ) ) ) |
224 |
|
oveq2 |
|- ( w = E -> ( D x.s w ) = ( D x.s E ) ) |
225 |
223 224
|
oveq12d |
|- ( w = E -> ( ( ( D x.s F ) +s ( C x.s w ) ) -s ( D x.s w ) ) = ( ( ( D x.s F ) +s ( C x.s E ) ) -s ( D x.s E ) ) ) |
226 |
225
|
eqeq2d |
|- ( w = E -> ( ( ( ( D x.s F ) +s ( C x.s E ) ) -s ( D x.s E ) ) = ( ( ( D x.s F ) +s ( C x.s w ) ) -s ( D x.s w ) ) <-> ( ( ( D x.s F ) +s ( C x.s E ) ) -s ( D x.s E ) ) = ( ( ( D x.s F ) +s ( C x.s E ) ) -s ( D x.s E ) ) ) ) |
227 |
221 226
|
rspc2ev |
|- ( ( D e. ( _Right ` C ) /\ E e. ( _Left ` F ) /\ ( ( ( D x.s F ) +s ( C x.s E ) ) -s ( D x.s E ) ) = ( ( ( D x.s F ) +s ( C x.s E ) ) -s ( D x.s E ) ) ) -> E. v e. ( _Right ` C ) E. w e. ( _Left ` F ) ( ( ( D x.s F ) +s ( C x.s E ) ) -s ( D x.s E ) ) = ( ( ( v x.s F ) +s ( C x.s w ) ) -s ( v x.s w ) ) ) |
228 |
216 227
|
mp3an3 |
|- ( ( D e. ( _Right ` C ) /\ E e. ( _Left ` F ) ) -> E. v e. ( _Right ` C ) E. w e. ( _Left ` F ) ( ( ( D x.s F ) +s ( C x.s E ) ) -s ( D x.s E ) ) = ( ( ( v x.s F ) +s ( C x.s w ) ) -s ( v x.s w ) ) ) |
229 |
209 215 228
|
syl2anc |
|- ( ( ph /\ ( ( bday ` D ) e. ( bday ` C ) /\ ( bday ` E ) e. ( bday ` F ) ) ) -> E. v e. ( _Right ` C ) E. w e. ( _Left ` F ) ( ( ( D x.s F ) +s ( C x.s E ) ) -s ( D x.s E ) ) = ( ( ( v x.s F ) +s ( C x.s w ) ) -s ( v x.s w ) ) ) |
230 |
|
ovex |
|- ( ( ( D x.s F ) +s ( C x.s E ) ) -s ( D x.s E ) ) e. _V |
231 |
|
eqeq1 |
|- ( j = ( ( ( D x.s F ) +s ( C x.s E ) ) -s ( D x.s E ) ) -> ( j = ( ( ( v x.s F ) +s ( C x.s w ) ) -s ( v x.s w ) ) <-> ( ( ( D x.s F ) +s ( C x.s E ) ) -s ( D x.s E ) ) = ( ( ( v x.s F ) +s ( C x.s w ) ) -s ( v x.s w ) ) ) ) |
232 |
231
|
2rexbidv |
|- ( j = ( ( ( D x.s F ) +s ( C x.s E ) ) -s ( D x.s E ) ) -> ( E. v e. ( _Right ` C ) E. w e. ( _Left ` F ) j = ( ( ( v x.s F ) +s ( C x.s w ) ) -s ( v x.s w ) ) <-> E. v e. ( _Right ` C ) E. w e. ( _Left ` F ) ( ( ( D x.s F ) +s ( C x.s E ) ) -s ( D x.s E ) ) = ( ( ( v x.s F ) +s ( C x.s w ) ) -s ( v x.s w ) ) ) ) |
233 |
230 232
|
elab |
|- ( ( ( ( D x.s F ) +s ( C x.s E ) ) -s ( D x.s E ) ) e. { j | E. v e. ( _Right ` C ) E. w e. ( _Left ` F ) j = ( ( ( v x.s F ) +s ( C x.s w ) ) -s ( v x.s w ) ) } <-> E. v e. ( _Right ` C ) E. w e. ( _Left ` F ) ( ( ( D x.s F ) +s ( C x.s E ) ) -s ( D x.s E ) ) = ( ( ( v x.s F ) +s ( C x.s w ) ) -s ( v x.s w ) ) ) |
234 |
229 233
|
sylibr |
|- ( ( ph /\ ( ( bday ` D ) e. ( bday ` C ) /\ ( bday ` E ) e. ( bday ` F ) ) ) -> ( ( ( D x.s F ) +s ( C x.s E ) ) -s ( D x.s E ) ) e. { j | E. v e. ( _Right ` C ) E. w e. ( _Left ` F ) j = ( ( ( v x.s F ) +s ( C x.s w ) ) -s ( v x.s w ) ) } ) |
235 |
|
elun2 |
|- ( ( ( ( D x.s F ) +s ( C x.s E ) ) -s ( D x.s E ) ) e. { j | E. v e. ( _Right ` C ) E. w e. ( _Left ` F ) j = ( ( ( v x.s F ) +s ( C x.s w ) ) -s ( v x.s w ) ) } -> ( ( ( D x.s F ) +s ( C x.s E ) ) -s ( D x.s E ) ) e. ( { i | E. t e. ( _Left ` C ) E. u e. ( _Right ` F ) i = ( ( ( t x.s F ) +s ( C x.s u ) ) -s ( t x.s u ) ) } u. { j | E. v e. ( _Right ` C ) E. w e. ( _Left ` F ) j = ( ( ( v x.s F ) +s ( C x.s w ) ) -s ( v x.s w ) ) } ) ) |
236 |
234 235
|
syl |
|- ( ( ph /\ ( ( bday ` D ) e. ( bday ` C ) /\ ( bday ` E ) e. ( bday ` F ) ) ) -> ( ( ( D x.s F ) +s ( C x.s E ) ) -s ( D x.s E ) ) e. ( { i | E. t e. ( _Left ` C ) E. u e. ( _Right ` F ) i = ( ( ( t x.s F ) +s ( C x.s u ) ) -s ( t x.s u ) ) } u. { j | E. v e. ( _Right ` C ) E. w e. ( _Left ` F ) j = ( ( ( v x.s F ) +s ( C x.s w ) ) -s ( v x.s w ) ) } ) ) |
237 |
195 198 236
|
ssltsepcd |
|- ( ( ph /\ ( ( bday ` D ) e. ( bday ` C ) /\ ( bday ` E ) e. ( bday ` F ) ) ) -> ( C x.s F ) |
238 |
129 124
|
addscomd |
|- ( ph -> ( ( D x.s F ) +s ( C x.s E ) ) = ( ( C x.s E ) +s ( D x.s F ) ) ) |
239 |
238
|
oveq1d |
|- ( ph -> ( ( ( D x.s F ) +s ( C x.s E ) ) -s ( D x.s E ) ) = ( ( ( C x.s E ) +s ( D x.s F ) ) -s ( D x.s E ) ) ) |
240 |
124 129 109
|
addsubsassd |
|- ( ph -> ( ( ( C x.s E ) +s ( D x.s F ) ) -s ( D x.s E ) ) = ( ( C x.s E ) +s ( ( D x.s F ) -s ( D x.s E ) ) ) ) |
241 |
239 240
|
eqtrd |
|- ( ph -> ( ( ( D x.s F ) +s ( C x.s E ) ) -s ( D x.s E ) ) = ( ( C x.s E ) +s ( ( D x.s F ) -s ( D x.s E ) ) ) ) |
242 |
241
|
breq2d |
|- ( ph -> ( ( C x.s F ) ( C x.s F ) |
243 |
129 109
|
subscld |
|- ( ph -> ( ( D x.s F ) -s ( D x.s E ) ) e. No ) |
244 |
96 124 243
|
sltsubadd2d |
|- ( ph -> ( ( ( C x.s F ) -s ( C x.s E ) ) ( C x.s F ) |
245 |
242 244
|
bitr4d |
|- ( ph -> ( ( C x.s F ) ( ( C x.s F ) -s ( C x.s E ) ) |
246 |
245
|
adantr |
|- ( ( ph /\ ( ( bday ` D ) e. ( bday ` C ) /\ ( bday ` E ) e. ( bday ` F ) ) ) -> ( ( C x.s F ) ( ( C x.s F ) -s ( C x.s E ) ) |
247 |
237 246
|
mpbid |
|- ( ( ph /\ ( ( bday ` D ) e. ( bday ` C ) /\ ( bday ` E ) e. ( bday ` F ) ) ) -> ( ( C x.s F ) -s ( C x.s E ) ) |
248 |
247
|
anassrs |
|- ( ( ( ph /\ ( bday ` D ) e. ( bday ` C ) ) /\ ( bday ` E ) e. ( bday ` F ) ) -> ( ( C x.s F ) -s ( C x.s E ) ) |
249 |
123
|
simp2d |
|- ( ph -> ( { g | E. p e. ( _Left ` C ) E. q e. ( _Left ` E ) g = ( ( ( p x.s E ) +s ( C x.s q ) ) -s ( p x.s q ) ) } u. { h | E. r e. ( _Right ` C ) E. s e. ( _Right ` E ) h = ( ( ( r x.s E ) +s ( C x.s s ) ) -s ( r x.s s ) ) } ) < |
250 |
249
|
adantr |
|- ( ( ph /\ ( ( bday ` D ) e. ( bday ` C ) /\ ( bday ` F ) e. ( bday ` E ) ) ) -> ( { g | E. p e. ( _Left ` C ) E. q e. ( _Left ` E ) g = ( ( ( p x.s E ) +s ( C x.s q ) ) -s ( p x.s q ) ) } u. { h | E. r e. ( _Right ` C ) E. s e. ( _Right ` E ) h = ( ( ( r x.s E ) +s ( C x.s s ) ) -s ( r x.s s ) ) } ) < |
251 |
|
simprl |
|- ( ( ph /\ ( ( bday ` D ) e. ( bday ` C ) /\ ( bday ` F ) e. ( bday ` E ) ) ) -> ( bday ` D ) e. ( bday ` C ) ) |
252 |
3
|
adantr |
|- ( ( ph /\ ( ( bday ` D ) e. ( bday ` C ) /\ ( bday ` F ) e. ( bday ` E ) ) ) -> D e. No ) |
253 |
200 252 202
|
sylancr |
|- ( ( ph /\ ( ( bday ` D ) e. ( bday ` C ) /\ ( bday ` F ) e. ( bday ` E ) ) ) -> ( D e. ( _Old ` ( bday ` C ) ) <-> ( bday ` D ) e. ( bday ` C ) ) ) |
254 |
251 253
|
mpbird |
|- ( ( ph /\ ( ( bday ` D ) e. ( bday ` C ) /\ ( bday ` F ) e. ( bday ` E ) ) ) -> D e. ( _Old ` ( bday ` C ) ) ) |
255 |
6
|
adantr |
|- ( ( ph /\ ( ( bday ` D ) e. ( bday ` C ) /\ ( bday ` F ) e. ( bday ` E ) ) ) -> C |
256 |
254 255 208
|
sylanbrc |
|- ( ( ph /\ ( ( bday ` D ) e. ( bday ` C ) /\ ( bday ` F ) e. ( bday ` E ) ) ) -> D e. ( _Right ` C ) ) |
257 |
|
simprr |
|- ( ( ph /\ ( ( bday ` D ) e. ( bday ` C ) /\ ( bday ` F ) e. ( bday ` E ) ) ) -> ( bday ` F ) e. ( bday ` E ) ) |
258 |
5
|
adantr |
|- ( ( ph /\ ( ( bday ` D ) e. ( bday ` C ) /\ ( bday ` F ) e. ( bday ` E ) ) ) -> F e. No ) |
259 |
147 258 149
|
sylancr |
|- ( ( ph /\ ( ( bday ` D ) e. ( bday ` C ) /\ ( bday ` F ) e. ( bday ` E ) ) ) -> ( F e. ( _Old ` ( bday ` E ) ) <-> ( bday ` F ) e. ( bday ` E ) ) ) |
260 |
257 259
|
mpbird |
|- ( ( ph /\ ( ( bday ` D ) e. ( bday ` C ) /\ ( bday ` F ) e. ( bday ` E ) ) ) -> F e. ( _Old ` ( bday ` E ) ) ) |
261 |
7
|
adantr |
|- ( ( ph /\ ( ( bday ` D ) e. ( bday ` C ) /\ ( bday ` F ) e. ( bday ` E ) ) ) -> E |
262 |
260 261 155
|
sylanbrc |
|- ( ( ph /\ ( ( bday ` D ) e. ( bday ` C ) /\ ( bday ` F ) e. ( bday ` E ) ) ) -> F e. ( _Right ` E ) ) |
263 |
|
eqid |
|- ( ( ( D x.s E ) +s ( C x.s F ) ) -s ( D x.s F ) ) = ( ( ( D x.s E ) +s ( C x.s F ) ) -s ( D x.s F ) ) |
264 |
|
oveq1 |
|- ( r = D -> ( r x.s E ) = ( D x.s E ) ) |
265 |
264
|
oveq1d |
|- ( r = D -> ( ( r x.s E ) +s ( C x.s s ) ) = ( ( D x.s E ) +s ( C x.s s ) ) ) |
266 |
|
oveq1 |
|- ( r = D -> ( r x.s s ) = ( D x.s s ) ) |
267 |
265 266
|
oveq12d |
|- ( r = D -> ( ( ( r x.s E ) +s ( C x.s s ) ) -s ( r x.s s ) ) = ( ( ( D x.s E ) +s ( C x.s s ) ) -s ( D x.s s ) ) ) |
268 |
267
|
eqeq2d |
|- ( r = D -> ( ( ( ( D x.s E ) +s ( C x.s F ) ) -s ( D x.s F ) ) = ( ( ( r x.s E ) +s ( C x.s s ) ) -s ( r x.s s ) ) <-> ( ( ( D x.s E ) +s ( C x.s F ) ) -s ( D x.s F ) ) = ( ( ( D x.s E ) +s ( C x.s s ) ) -s ( D x.s s ) ) ) ) |
269 |
|
oveq2 |
|- ( s = F -> ( C x.s s ) = ( C x.s F ) ) |
270 |
269
|
oveq2d |
|- ( s = F -> ( ( D x.s E ) +s ( C x.s s ) ) = ( ( D x.s E ) +s ( C x.s F ) ) ) |
271 |
|
oveq2 |
|- ( s = F -> ( D x.s s ) = ( D x.s F ) ) |
272 |
270 271
|
oveq12d |
|- ( s = F -> ( ( ( D x.s E ) +s ( C x.s s ) ) -s ( D x.s s ) ) = ( ( ( D x.s E ) +s ( C x.s F ) ) -s ( D x.s F ) ) ) |
273 |
272
|
eqeq2d |
|- ( s = F -> ( ( ( ( D x.s E ) +s ( C x.s F ) ) -s ( D x.s F ) ) = ( ( ( D x.s E ) +s ( C x.s s ) ) -s ( D x.s s ) ) <-> ( ( ( D x.s E ) +s ( C x.s F ) ) -s ( D x.s F ) ) = ( ( ( D x.s E ) +s ( C x.s F ) ) -s ( D x.s F ) ) ) ) |
274 |
268 273
|
rspc2ev |
|- ( ( D e. ( _Right ` C ) /\ F e. ( _Right ` E ) /\ ( ( ( D x.s E ) +s ( C x.s F ) ) -s ( D x.s F ) ) = ( ( ( D x.s E ) +s ( C x.s F ) ) -s ( D x.s F ) ) ) -> E. r e. ( _Right ` C ) E. s e. ( _Right ` E ) ( ( ( D x.s E ) +s ( C x.s F ) ) -s ( D x.s F ) ) = ( ( ( r x.s E ) +s ( C x.s s ) ) -s ( r x.s s ) ) ) |
275 |
263 274
|
mp3an3 |
|- ( ( D e. ( _Right ` C ) /\ F e. ( _Right ` E ) ) -> E. r e. ( _Right ` C ) E. s e. ( _Right ` E ) ( ( ( D x.s E ) +s ( C x.s F ) ) -s ( D x.s F ) ) = ( ( ( r x.s E ) +s ( C x.s s ) ) -s ( r x.s s ) ) ) |
276 |
256 262 275
|
syl2anc |
|- ( ( ph /\ ( ( bday ` D ) e. ( bday ` C ) /\ ( bday ` F ) e. ( bday ` E ) ) ) -> E. r e. ( _Right ` C ) E. s e. ( _Right ` E ) ( ( ( D x.s E ) +s ( C x.s F ) ) -s ( D x.s F ) ) = ( ( ( r x.s E ) +s ( C x.s s ) ) -s ( r x.s s ) ) ) |
277 |
|
ovex |
|- ( ( ( D x.s E ) +s ( C x.s F ) ) -s ( D x.s F ) ) e. _V |
278 |
|
eqeq1 |
|- ( h = ( ( ( D x.s E ) +s ( C x.s F ) ) -s ( D x.s F ) ) -> ( h = ( ( ( r x.s E ) +s ( C x.s s ) ) -s ( r x.s s ) ) <-> ( ( ( D x.s E ) +s ( C x.s F ) ) -s ( D x.s F ) ) = ( ( ( r x.s E ) +s ( C x.s s ) ) -s ( r x.s s ) ) ) ) |
279 |
278
|
2rexbidv |
|- ( h = ( ( ( D x.s E ) +s ( C x.s F ) ) -s ( D x.s F ) ) -> ( E. r e. ( _Right ` C ) E. s e. ( _Right ` E ) h = ( ( ( r x.s E ) +s ( C x.s s ) ) -s ( r x.s s ) ) <-> E. r e. ( _Right ` C ) E. s e. ( _Right ` E ) ( ( ( D x.s E ) +s ( C x.s F ) ) -s ( D x.s F ) ) = ( ( ( r x.s E ) +s ( C x.s s ) ) -s ( r x.s s ) ) ) ) |
280 |
277 279
|
elab |
|- ( ( ( ( D x.s E ) +s ( C x.s F ) ) -s ( D x.s F ) ) e. { h | E. r e. ( _Right ` C ) E. s e. ( _Right ` E ) h = ( ( ( r x.s E ) +s ( C x.s s ) ) -s ( r x.s s ) ) } <-> E. r e. ( _Right ` C ) E. s e. ( _Right ` E ) ( ( ( D x.s E ) +s ( C x.s F ) ) -s ( D x.s F ) ) = ( ( ( r x.s E ) +s ( C x.s s ) ) -s ( r x.s s ) ) ) |
281 |
276 280
|
sylibr |
|- ( ( ph /\ ( ( bday ` D ) e. ( bday ` C ) /\ ( bday ` F ) e. ( bday ` E ) ) ) -> ( ( ( D x.s E ) +s ( C x.s F ) ) -s ( D x.s F ) ) e. { h | E. r e. ( _Right ` C ) E. s e. ( _Right ` E ) h = ( ( ( r x.s E ) +s ( C x.s s ) ) -s ( r x.s s ) ) } ) |
282 |
|
elun2 |
|- ( ( ( ( D x.s E ) +s ( C x.s F ) ) -s ( D x.s F ) ) e. { h | E. r e. ( _Right ` C ) E. s e. ( _Right ` E ) h = ( ( ( r x.s E ) +s ( C x.s s ) ) -s ( r x.s s ) ) } -> ( ( ( D x.s E ) +s ( C x.s F ) ) -s ( D x.s F ) ) e. ( { g | E. p e. ( _Left ` C ) E. q e. ( _Left ` E ) g = ( ( ( p x.s E ) +s ( C x.s q ) ) -s ( p x.s q ) ) } u. { h | E. r e. ( _Right ` C ) E. s e. ( _Right ` E ) h = ( ( ( r x.s E ) +s ( C x.s s ) ) -s ( r x.s s ) ) } ) ) |
283 |
281 282
|
syl |
|- ( ( ph /\ ( ( bday ` D ) e. ( bday ` C ) /\ ( bday ` F ) e. ( bday ` E ) ) ) -> ( ( ( D x.s E ) +s ( C x.s F ) ) -s ( D x.s F ) ) e. ( { g | E. p e. ( _Left ` C ) E. q e. ( _Left ` E ) g = ( ( ( p x.s E ) +s ( C x.s q ) ) -s ( p x.s q ) ) } u. { h | E. r e. ( _Right ` C ) E. s e. ( _Right ` E ) h = ( ( ( r x.s E ) +s ( C x.s s ) ) -s ( r x.s s ) ) } ) ) |
284 |
|
ovex |
|- ( C x.s E ) e. _V |
285 |
284
|
snid |
|- ( C x.s E ) e. { ( C x.s E ) } |
286 |
285
|
a1i |
|- ( ( ph /\ ( ( bday ` D ) e. ( bday ` C ) /\ ( bday ` F ) e. ( bday ` E ) ) ) -> ( C x.s E ) e. { ( C x.s E ) } ) |
287 |
250 283 286
|
ssltsepcd |
|- ( ( ph /\ ( ( bday ` D ) e. ( bday ` C ) /\ ( bday ` F ) e. ( bday ` E ) ) ) -> ( ( ( D x.s E ) +s ( C x.s F ) ) -s ( D x.s F ) ) |
288 |
109 96
|
addscomd |
|- ( ph -> ( ( D x.s E ) +s ( C x.s F ) ) = ( ( C x.s F ) +s ( D x.s E ) ) ) |
289 |
288
|
oveq1d |
|- ( ph -> ( ( ( D x.s E ) +s ( C x.s F ) ) -s ( D x.s F ) ) = ( ( ( C x.s F ) +s ( D x.s E ) ) -s ( D x.s F ) ) ) |
290 |
96 109 129
|
addsubsassd |
|- ( ph -> ( ( ( C x.s F ) +s ( D x.s E ) ) -s ( D x.s F ) ) = ( ( C x.s F ) +s ( ( D x.s E ) -s ( D x.s F ) ) ) ) |
291 |
289 290
|
eqtrd |
|- ( ph -> ( ( ( D x.s E ) +s ( C x.s F ) ) -s ( D x.s F ) ) = ( ( C x.s F ) +s ( ( D x.s E ) -s ( D x.s F ) ) ) ) |
292 |
291
|
breq1d |
|- ( ph -> ( ( ( ( D x.s E ) +s ( C x.s F ) ) -s ( D x.s F ) ) ( ( C x.s F ) +s ( ( D x.s E ) -s ( D x.s F ) ) ) |
293 |
109 129
|
subscld |
|- ( ph -> ( ( D x.s E ) -s ( D x.s F ) ) e. No ) |
294 |
96 293 124
|
sltaddsub2d |
|- ( ph -> ( ( ( C x.s F ) +s ( ( D x.s E ) -s ( D x.s F ) ) ) ( ( D x.s E ) -s ( D x.s F ) ) |
295 |
292 294
|
bitrd |
|- ( ph -> ( ( ( ( D x.s E ) +s ( C x.s F ) ) -s ( D x.s F ) ) ( ( D x.s E ) -s ( D x.s F ) ) |
296 |
295 187
|
bitrd |
|- ( ph -> ( ( ( ( D x.s E ) +s ( C x.s F ) ) -s ( D x.s F ) ) ( ( C x.s F ) -s ( C x.s E ) ) |
297 |
296
|
adantr |
|- ( ( ph /\ ( ( bday ` D ) e. ( bday ` C ) /\ ( bday ` F ) e. ( bday ` E ) ) ) -> ( ( ( ( D x.s E ) +s ( C x.s F ) ) -s ( D x.s F ) ) ( ( C x.s F ) -s ( C x.s E ) ) |
298 |
287 297
|
mpbid |
|- ( ( ph /\ ( ( bday ` D ) e. ( bday ` C ) /\ ( bday ` F ) e. ( bday ` E ) ) ) -> ( ( C x.s F ) -s ( C x.s E ) ) |
299 |
298
|
anassrs |
|- ( ( ( ph /\ ( bday ` D ) e. ( bday ` C ) ) /\ ( bday ` F ) e. ( bday ` E ) ) -> ( ( C x.s F ) -s ( C x.s E ) ) |
300 |
9
|
adantr |
|- ( ( ph /\ ( bday ` D ) e. ( bday ` C ) ) -> ( ( bday ` E ) e. ( bday ` F ) \/ ( bday ` F ) e. ( bday ` E ) ) ) |
301 |
248 299 300
|
mpjaodan |
|- ( ( ph /\ ( bday ` D ) e. ( bday ` C ) ) -> ( ( C x.s F ) -s ( C x.s E ) ) |
302 |
193 301 8
|
mpjaodan |
|- ( ph -> ( ( C x.s F ) -s ( C x.s E ) ) |