Metamath Proof Explorer


Theorem mulsproplem8

Description: Lemma for surreal multiplication. Show one of the inequalities involved in surreal multiplication's cuts. (Contributed by Scott Fenton, 5-Mar-2025)

Ref Expression
Hypotheses mulsproplem.1
|- ( ph -> A. a e. No A. b e. No A. c e. No A. d e. No A. e e. No A. f e. No ( ( ( ( bday ` a ) +no ( bday ` b ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) -> ( ( a x.s b ) e. No /\ ( ( c  ( ( c x.s f ) -s ( c x.s e ) ) 
mulsproplem8.1
|- ( ph -> A e. No )
mulsproplem8.2
|- ( ph -> B e. No )
mulsproplem8.3
|- ( ph -> R e. ( _Right ` A ) )
mulsproplem8.4
|- ( ph -> S e. ( _Right ` B ) )
mulsproplem8.5
|- ( ph -> V e. ( _Right ` A ) )
mulsproplem8.6
|- ( ph -> W e. ( _Left ` B ) )
Assertion mulsproplem8
|- ( ph -> ( ( ( R x.s B ) +s ( A x.s S ) ) -s ( R x.s S ) ) 

Proof

Step Hyp Ref Expression
1 mulsproplem.1
 |-  ( ph -> A. a e. No A. b e. No A. c e. No A. d e. No A. e e. No A. f e. No ( ( ( ( bday ` a ) +no ( bday ` b ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) -> ( ( a x.s b ) e. No /\ ( ( c  ( ( c x.s f ) -s ( c x.s e ) ) 
2 mulsproplem8.1
 |-  ( ph -> A e. No )
3 mulsproplem8.2
 |-  ( ph -> B e. No )
4 mulsproplem8.3
 |-  ( ph -> R e. ( _Right ` A ) )
5 mulsproplem8.4
 |-  ( ph -> S e. ( _Right ` B ) )
6 mulsproplem8.5
 |-  ( ph -> V e. ( _Right ` A ) )
7 mulsproplem8.6
 |-  ( ph -> W e. ( _Left ` B ) )
8 rightssno
 |-  ( _Right ` A ) C_ No
9 8 4 sselid
 |-  ( ph -> R e. No )
10 8 6 sselid
 |-  ( ph -> V e. No )
11 sltlin
 |-  ( ( R e. No /\ V e. No ) -> ( R 
12 9 10 11 syl2anc
 |-  ( ph -> ( R 
13 rightssold
 |-  ( _Right ` A ) C_ ( _Old ` ( bday ` A ) )
14 13 4 sselid
 |-  ( ph -> R e. ( _Old ` ( bday ` A ) ) )
15 1 14 3 mulsproplem2
 |-  ( ph -> ( R x.s B ) e. No )
16 rightssold
 |-  ( _Right ` B ) C_ ( _Old ` ( bday ` B ) )
17 16 5 sselid
 |-  ( ph -> S e. ( _Old ` ( bday ` B ) ) )
18 1 2 17 mulsproplem3
 |-  ( ph -> ( A x.s S ) e. No )
19 15 18 addscld
 |-  ( ph -> ( ( R x.s B ) +s ( A x.s S ) ) e. No )
20 1 14 17 mulsproplem4
 |-  ( ph -> ( R x.s S ) e. No )
21 19 20 subscld
 |-  ( ph -> ( ( ( R x.s B ) +s ( A x.s S ) ) -s ( R x.s S ) ) e. No )
22 21 adantr
 |-  ( ( ph /\ R  ( ( ( R x.s B ) +s ( A x.s S ) ) -s ( R x.s S ) ) e. No )
23 leftssold
 |-  ( _Left ` B ) C_ ( _Old ` ( bday ` B ) )
24 23 7 sselid
 |-  ( ph -> W e. ( _Old ` ( bday ` B ) ) )
25 1 2 24 mulsproplem3
 |-  ( ph -> ( A x.s W ) e. No )
26 15 25 addscld
 |-  ( ph -> ( ( R x.s B ) +s ( A x.s W ) ) e. No )
27 1 14 24 mulsproplem4
 |-  ( ph -> ( R x.s W ) e. No )
28 26 27 subscld
 |-  ( ph -> ( ( ( R x.s B ) +s ( A x.s W ) ) -s ( R x.s W ) ) e. No )
29 28 adantr
 |-  ( ( ph /\ R  ( ( ( R x.s B ) +s ( A x.s W ) ) -s ( R x.s W ) ) e. No )
30 13 6 sselid
 |-  ( ph -> V e. ( _Old ` ( bday ` A ) ) )
31 1 30 3 mulsproplem2
 |-  ( ph -> ( V x.s B ) e. No )
32 31 25 addscld
 |-  ( ph -> ( ( V x.s B ) +s ( A x.s W ) ) e. No )
33 1 30 24 mulsproplem4
 |-  ( ph -> ( V x.s W ) e. No )
34 32 33 subscld
 |-  ( ph -> ( ( ( V x.s B ) +s ( A x.s W ) ) -s ( V x.s W ) ) e. No )
35 34 adantr
 |-  ( ( ph /\ R  ( ( ( V x.s B ) +s ( A x.s W ) ) -s ( V x.s W ) ) e. No )
36 ssltright
 |-  ( A e. No -> { A } <
37 2 36 syl
 |-  ( ph -> { A } <
38 snidg
 |-  ( A e. No -> A e. { A } )
39 2 38 syl
 |-  ( ph -> A e. { A } )
40 37 39 4 ssltsepcd
 |-  ( ph -> A 
41 lltropt
 |-  ( _Left ` B ) <
42 41 a1i
 |-  ( ph -> ( _Left ` B ) <
43 42 7 5 ssltsepcd
 |-  ( ph -> W 
44 0sno
 |-  0s e. No
45 44 a1i
 |-  ( ph -> 0s e. No )
46 leftssno
 |-  ( _Left ` B ) C_ No
47 46 7 sselid
 |-  ( ph -> W e. No )
48 rightssno
 |-  ( _Right ` B ) C_ No
49 48 5 sselid
 |-  ( ph -> S e. No )
50 bday0s
 |-  ( bday ` 0s ) = (/)
51 50 50 oveq12i
 |-  ( ( bday ` 0s ) +no ( bday ` 0s ) ) = ( (/) +no (/) )
52 0elon
 |-  (/) e. On
53 naddrid
 |-  ( (/) e. On -> ( (/) +no (/) ) = (/) )
54 52 53 ax-mp
 |-  ( (/) +no (/) ) = (/)
55 51 54 eqtri
 |-  ( ( bday ` 0s ) +no ( bday ` 0s ) ) = (/)
56 55 uneq1i
 |-  ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` R ) +no ( bday ` S ) ) ) u. ( ( ( bday ` A ) +no ( bday ` S ) ) u. ( ( bday ` R ) +no ( bday ` W ) ) ) ) ) = ( (/) u. ( ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` R ) +no ( bday ` S ) ) ) u. ( ( ( bday ` A ) +no ( bday ` S ) ) u. ( ( bday ` R ) +no ( bday ` W ) ) ) ) )
57 0un
 |-  ( (/) u. ( ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` R ) +no ( bday ` S ) ) ) u. ( ( ( bday ` A ) +no ( bday ` S ) ) u. ( ( bday ` R ) +no ( bday ` W ) ) ) ) ) = ( ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` R ) +no ( bday ` S ) ) ) u. ( ( ( bday ` A ) +no ( bday ` S ) ) u. ( ( bday ` R ) +no ( bday ` W ) ) ) )
58 56 57 eqtri
 |-  ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` R ) +no ( bday ` S ) ) ) u. ( ( ( bday ` A ) +no ( bday ` S ) ) u. ( ( bday ` R ) +no ( bday ` W ) ) ) ) ) = ( ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` R ) +no ( bday ` S ) ) ) u. ( ( ( bday ` A ) +no ( bday ` S ) ) u. ( ( bday ` R ) +no ( bday ` W ) ) ) )
59 oldbdayim
 |-  ( W e. ( _Old ` ( bday ` B ) ) -> ( bday ` W ) e. ( bday ` B ) )
60 24 59 syl
 |-  ( ph -> ( bday ` W ) e. ( bday ` B ) )
61 bdayelon
 |-  ( bday ` W ) e. On
62 bdayelon
 |-  ( bday ` B ) e. On
63 bdayelon
 |-  ( bday ` A ) e. On
64 naddel2
 |-  ( ( ( bday ` W ) e. On /\ ( bday ` B ) e. On /\ ( bday ` A ) e. On ) -> ( ( bday ` W ) e. ( bday ` B ) <-> ( ( bday ` A ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) )
65 61 62 63 64 mp3an
 |-  ( ( bday ` W ) e. ( bday ` B ) <-> ( ( bday ` A ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) )
66 60 65 sylib
 |-  ( ph -> ( ( bday ` A ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) )
67 oldbdayim
 |-  ( R e. ( _Old ` ( bday ` A ) ) -> ( bday ` R ) e. ( bday ` A ) )
68 14 67 syl
 |-  ( ph -> ( bday ` R ) e. ( bday ` A ) )
69 oldbdayim
 |-  ( S e. ( _Old ` ( bday ` B ) ) -> ( bday ` S ) e. ( bday ` B ) )
70 17 69 syl
 |-  ( ph -> ( bday ` S ) e. ( bday ` B ) )
71 naddel12
 |-  ( ( ( bday ` A ) e. On /\ ( bday ` B ) e. On ) -> ( ( ( bday ` R ) e. ( bday ` A ) /\ ( bday ` S ) e. ( bday ` B ) ) -> ( ( bday ` R ) +no ( bday ` S ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) )
72 63 62 71 mp2an
 |-  ( ( ( bday ` R ) e. ( bday ` A ) /\ ( bday ` S ) e. ( bday ` B ) ) -> ( ( bday ` R ) +no ( bday ` S ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) )
73 68 70 72 syl2anc
 |-  ( ph -> ( ( bday ` R ) +no ( bday ` S ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) )
74 66 73 jca
 |-  ( ph -> ( ( ( bday ` A ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` R ) +no ( bday ` S ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) )
75 bdayelon
 |-  ( bday ` S ) e. On
76 naddel2
 |-  ( ( ( bday ` S ) e. On /\ ( bday ` B ) e. On /\ ( bday ` A ) e. On ) -> ( ( bday ` S ) e. ( bday ` B ) <-> ( ( bday ` A ) +no ( bday ` S ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) )
77 75 62 63 76 mp3an
 |-  ( ( bday ` S ) e. ( bday ` B ) <-> ( ( bday ` A ) +no ( bday ` S ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) )
78 70 77 sylib
 |-  ( ph -> ( ( bday ` A ) +no ( bday ` S ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) )
79 naddel12
 |-  ( ( ( bday ` A ) e. On /\ ( bday ` B ) e. On ) -> ( ( ( bday ` R ) e. ( bday ` A ) /\ ( bday ` W ) e. ( bday ` B ) ) -> ( ( bday ` R ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) )
80 63 62 79 mp2an
 |-  ( ( ( bday ` R ) e. ( bday ` A ) /\ ( bday ` W ) e. ( bday ` B ) ) -> ( ( bday ` R ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) )
81 68 60 80 syl2anc
 |-  ( ph -> ( ( bday ` R ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) )
82 78 81 jca
 |-  ( ph -> ( ( ( bday ` A ) +no ( bday ` S ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` R ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) )
83 naddcl
 |-  ( ( ( bday ` A ) e. On /\ ( bday ` W ) e. On ) -> ( ( bday ` A ) +no ( bday ` W ) ) e. On )
84 63 61 83 mp2an
 |-  ( ( bday ` A ) +no ( bday ` W ) ) e. On
85 bdayelon
 |-  ( bday ` R ) e. On
86 naddcl
 |-  ( ( ( bday ` R ) e. On /\ ( bday ` S ) e. On ) -> ( ( bday ` R ) +no ( bday ` S ) ) e. On )
87 85 75 86 mp2an
 |-  ( ( bday ` R ) +no ( bday ` S ) ) e. On
88 84 87 onun2i
 |-  ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` R ) +no ( bday ` S ) ) ) e. On
89 naddcl
 |-  ( ( ( bday ` A ) e. On /\ ( bday ` S ) e. On ) -> ( ( bday ` A ) +no ( bday ` S ) ) e. On )
90 63 75 89 mp2an
 |-  ( ( bday ` A ) +no ( bday ` S ) ) e. On
91 naddcl
 |-  ( ( ( bday ` R ) e. On /\ ( bday ` W ) e. On ) -> ( ( bday ` R ) +no ( bday ` W ) ) e. On )
92 85 61 91 mp2an
 |-  ( ( bday ` R ) +no ( bday ` W ) ) e. On
93 90 92 onun2i
 |-  ( ( ( bday ` A ) +no ( bday ` S ) ) u. ( ( bday ` R ) +no ( bday ` W ) ) ) e. On
94 naddcl
 |-  ( ( ( bday ` A ) e. On /\ ( bday ` B ) e. On ) -> ( ( bday ` A ) +no ( bday ` B ) ) e. On )
95 63 62 94 mp2an
 |-  ( ( bday ` A ) +no ( bday ` B ) ) e. On
96 onunel
 |-  ( ( ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` R ) +no ( bday ` S ) ) ) e. On /\ ( ( ( bday ` A ) +no ( bday ` S ) ) u. ( ( bday ` R ) +no ( bday ` W ) ) ) e. On /\ ( ( bday ` A ) +no ( bday ` B ) ) e. On ) -> ( ( ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` R ) +no ( bday ` S ) ) ) u. ( ( ( bday ` A ) +no ( bday ` S ) ) u. ( ( bday ` R ) +no ( bday ` W ) ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` R ) +no ( bday ` S ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( ( bday ` A ) +no ( bday ` S ) ) u. ( ( bday ` R ) +no ( bday ` W ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) )
97 88 93 95 96 mp3an
 |-  ( ( ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` R ) +no ( bday ` S ) ) ) u. ( ( ( bday ` A ) +no ( bday ` S ) ) u. ( ( bday ` R ) +no ( bday ` W ) ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` R ) +no ( bday ` S ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( ( bday ` A ) +no ( bday ` S ) ) u. ( ( bday ` R ) +no ( bday ` W ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) )
98 onunel
 |-  ( ( ( ( bday ` A ) +no ( bday ` W ) ) e. On /\ ( ( bday ` R ) +no ( bday ` S ) ) e. On /\ ( ( bday ` A ) +no ( bday ` B ) ) e. On ) -> ( ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` R ) +no ( bday ` S ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( bday ` A ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` R ) +no ( bday ` S ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) )
99 84 87 95 98 mp3an
 |-  ( ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` R ) +no ( bday ` S ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( bday ` A ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` R ) +no ( bday ` S ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) )
100 onunel
 |-  ( ( ( ( bday ` A ) +no ( bday ` S ) ) e. On /\ ( ( bday ` R ) +no ( bday ` W ) ) e. On /\ ( ( bday ` A ) +no ( bday ` B ) ) e. On ) -> ( ( ( ( bday ` A ) +no ( bday ` S ) ) u. ( ( bday ` R ) +no ( bday ` W ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( bday ` A ) +no ( bday ` S ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` R ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) )
101 90 92 95 100 mp3an
 |-  ( ( ( ( bday ` A ) +no ( bday ` S ) ) u. ( ( bday ` R ) +no ( bday ` W ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( bday ` A ) +no ( bday ` S ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` R ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) )
102 99 101 anbi12i
 |-  ( ( ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` R ) +no ( bday ` S ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( ( bday ` A ) +no ( bday ` S ) ) u. ( ( bday ` R ) +no ( bday ` W ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) <-> ( ( ( ( bday ` A ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` R ) +no ( bday ` S ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) /\ ( ( ( bday ` A ) +no ( bday ` S ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` R ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) )
103 97 102 bitri
 |-  ( ( ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` R ) +no ( bday ` S ) ) ) u. ( ( ( bday ` A ) +no ( bday ` S ) ) u. ( ( bday ` R ) +no ( bday ` W ) ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( ( bday ` A ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` R ) +no ( bday ` S ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) /\ ( ( ( bday ` A ) +no ( bday ` S ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` R ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) )
104 74 82 103 sylanbrc
 |-  ( ph -> ( ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` R ) +no ( bday ` S ) ) ) u. ( ( ( bday ` A ) +no ( bday ` S ) ) u. ( ( bday ` R ) +no ( bday ` W ) ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) )
105 elun1
 |-  ( ( ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` R ) +no ( bday ` S ) ) ) u. ( ( ( bday ` A ) +no ( bday ` S ) ) u. ( ( bday ` R ) +no ( bday ` W ) ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) -> ( ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` R ) +no ( bday ` S ) ) ) u. ( ( ( bday ` A ) +no ( bday ` S ) ) u. ( ( bday ` R ) +no ( bday ` W ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) )
106 104 105 syl
 |-  ( ph -> ( ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` R ) +no ( bday ` S ) ) ) u. ( ( ( bday ` A ) +no ( bday ` S ) ) u. ( ( bday ` R ) +no ( bday ` W ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) )
107 58 106 eqeltrid
 |-  ( ph -> ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` R ) +no ( bday ` S ) ) ) u. ( ( ( bday ` A ) +no ( bday ` S ) ) u. ( ( bday ` R ) +no ( bday ` W ) ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) )
108 1 45 45 2 9 47 49 107 mulsproplem1
 |-  ( ph -> ( ( 0s x.s 0s ) e. No /\ ( ( A  ( ( A x.s S ) -s ( A x.s W ) ) 
109 108 simprd
 |-  ( ph -> ( ( A  ( ( A x.s S ) -s ( A x.s W ) ) 
110 40 43 109 mp2and
 |-  ( ph -> ( ( A x.s S ) -s ( A x.s W ) ) 
111 18 20 25 27 sltsubsubbd
 |-  ( ph -> ( ( ( A x.s S ) -s ( A x.s W ) )  ( ( A x.s S ) -s ( R x.s S ) ) 
112 18 20 subscld
 |-  ( ph -> ( ( A x.s S ) -s ( R x.s S ) ) e. No )
113 25 27 subscld
 |-  ( ph -> ( ( A x.s W ) -s ( R x.s W ) ) e. No )
114 112 113 15 sltadd2d
 |-  ( ph -> ( ( ( A x.s S ) -s ( R x.s S ) )  ( ( R x.s B ) +s ( ( A x.s S ) -s ( R x.s S ) ) ) 
115 111 114 bitrd
 |-  ( ph -> ( ( ( A x.s S ) -s ( A x.s W ) )  ( ( R x.s B ) +s ( ( A x.s S ) -s ( R x.s S ) ) ) 
116 110 115 mpbid
 |-  ( ph -> ( ( R x.s B ) +s ( ( A x.s S ) -s ( R x.s S ) ) ) 
117 15 18 20 addsubsassd
 |-  ( ph -> ( ( ( R x.s B ) +s ( A x.s S ) ) -s ( R x.s S ) ) = ( ( R x.s B ) +s ( ( A x.s S ) -s ( R x.s S ) ) ) )
118 15 25 27 addsubsassd
 |-  ( ph -> ( ( ( R x.s B ) +s ( A x.s W ) ) -s ( R x.s W ) ) = ( ( R x.s B ) +s ( ( A x.s W ) -s ( R x.s W ) ) ) )
119 116 117 118 3brtr4d
 |-  ( ph -> ( ( ( R x.s B ) +s ( A x.s S ) ) -s ( R x.s S ) ) 
120 119 adantr
 |-  ( ( ph /\ R  ( ( ( R x.s B ) +s ( A x.s S ) ) -s ( R x.s S ) ) 
121 ssltleft
 |-  ( B e. No -> ( _Left ` B ) <
122 3 121 syl
 |-  ( ph -> ( _Left ` B ) <
123 snidg
 |-  ( B e. No -> B e. { B } )
124 3 123 syl
 |-  ( ph -> B e. { B } )
125 122 7 124 ssltsepcd
 |-  ( ph -> W 
126 55 uneq1i
 |-  ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( ( ( bday ` R ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) u. ( ( ( bday ` R ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) ) ) = ( (/) u. ( ( ( ( bday ` R ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) u. ( ( ( bday ` R ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) ) )
127 0un
 |-  ( (/) u. ( ( ( ( bday ` R ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) u. ( ( ( bday ` R ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) ) ) = ( ( ( ( bday ` R ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) u. ( ( ( bday ` R ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) )
128 126 127 eqtri
 |-  ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( ( ( bday ` R ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) u. ( ( ( bday ` R ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) ) ) = ( ( ( ( bday ` R ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) u. ( ( ( bday ` R ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) )
129 oldbdayim
 |-  ( V e. ( _Old ` ( bday ` A ) ) -> ( bday ` V ) e. ( bday ` A ) )
130 30 129 syl
 |-  ( ph -> ( bday ` V ) e. ( bday ` A ) )
131 bdayelon
 |-  ( bday ` V ) e. On
132 naddel1
 |-  ( ( ( bday ` V ) e. On /\ ( bday ` A ) e. On /\ ( bday ` B ) e. On ) -> ( ( bday ` V ) e. ( bday ` A ) <-> ( ( bday ` V ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) )
133 131 63 62 132 mp3an
 |-  ( ( bday ` V ) e. ( bday ` A ) <-> ( ( bday ` V ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) )
134 130 133 sylib
 |-  ( ph -> ( ( bday ` V ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) )
135 81 134 jca
 |-  ( ph -> ( ( ( bday ` R ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` V ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) )
136 naddel1
 |-  ( ( ( bday ` R ) e. On /\ ( bday ` A ) e. On /\ ( bday ` B ) e. On ) -> ( ( bday ` R ) e. ( bday ` A ) <-> ( ( bday ` R ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) )
137 85 63 62 136 mp3an
 |-  ( ( bday ` R ) e. ( bday ` A ) <-> ( ( bday ` R ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) )
138 68 137 sylib
 |-  ( ph -> ( ( bday ` R ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) )
139 naddel12
 |-  ( ( ( bday ` A ) e. On /\ ( bday ` B ) e. On ) -> ( ( ( bday ` V ) e. ( bday ` A ) /\ ( bday ` W ) e. ( bday ` B ) ) -> ( ( bday ` V ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) )
140 63 62 139 mp2an
 |-  ( ( ( bday ` V ) e. ( bday ` A ) /\ ( bday ` W ) e. ( bday ` B ) ) -> ( ( bday ` V ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) )
141 130 60 140 syl2anc
 |-  ( ph -> ( ( bday ` V ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) )
142 138 141 jca
 |-  ( ph -> ( ( ( bday ` R ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` V ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) )
143 naddcl
 |-  ( ( ( bday ` V ) e. On /\ ( bday ` B ) e. On ) -> ( ( bday ` V ) +no ( bday ` B ) ) e. On )
144 131 62 143 mp2an
 |-  ( ( bday ` V ) +no ( bday ` B ) ) e. On
145 92 144 onun2i
 |-  ( ( ( bday ` R ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) e. On
146 naddcl
 |-  ( ( ( bday ` R ) e. On /\ ( bday ` B ) e. On ) -> ( ( bday ` R ) +no ( bday ` B ) ) e. On )
147 85 62 146 mp2an
 |-  ( ( bday ` R ) +no ( bday ` B ) ) e. On
148 naddcl
 |-  ( ( ( bday ` V ) e. On /\ ( bday ` W ) e. On ) -> ( ( bday ` V ) +no ( bday ` W ) ) e. On )
149 131 61 148 mp2an
 |-  ( ( bday ` V ) +no ( bday ` W ) ) e. On
150 147 149 onun2i
 |-  ( ( ( bday ` R ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) e. On
151 onunel
 |-  ( ( ( ( ( bday ` R ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) e. On /\ ( ( ( bday ` R ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) e. On /\ ( ( bday ` A ) +no ( bday ` B ) ) e. On ) -> ( ( ( ( ( bday ` R ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) u. ( ( ( bday ` R ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( ( bday ` R ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( ( bday ` R ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) )
152 145 150 95 151 mp3an
 |-  ( ( ( ( ( bday ` R ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) u. ( ( ( bday ` R ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( ( bday ` R ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( ( bday ` R ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) )
153 onunel
 |-  ( ( ( ( bday ` R ) +no ( bday ` W ) ) e. On /\ ( ( bday ` V ) +no ( bday ` B ) ) e. On /\ ( ( bday ` A ) +no ( bday ` B ) ) e. On ) -> ( ( ( ( bday ` R ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( bday ` R ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` V ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) )
154 92 144 95 153 mp3an
 |-  ( ( ( ( bday ` R ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( bday ` R ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` V ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) )
155 onunel
 |-  ( ( ( ( bday ` R ) +no ( bday ` B ) ) e. On /\ ( ( bday ` V ) +no ( bday ` W ) ) e. On /\ ( ( bday ` A ) +no ( bday ` B ) ) e. On ) -> ( ( ( ( bday ` R ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( bday ` R ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` V ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) )
156 147 149 95 155 mp3an
 |-  ( ( ( ( bday ` R ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( bday ` R ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` V ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) )
157 154 156 anbi12i
 |-  ( ( ( ( ( bday ` R ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( ( bday ` R ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) <-> ( ( ( ( bday ` R ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` V ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) /\ ( ( ( bday ` R ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` V ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) )
158 152 157 bitri
 |-  ( ( ( ( ( bday ` R ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) u. ( ( ( bday ` R ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( ( bday ` R ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` V ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) /\ ( ( ( bday ` R ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` V ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) )
159 135 142 158 sylanbrc
 |-  ( ph -> ( ( ( ( bday ` R ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) u. ( ( ( bday ` R ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) )
160 elun1
 |-  ( ( ( ( ( bday ` R ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) u. ( ( ( bday ` R ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) -> ( ( ( ( bday ` R ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) u. ( ( ( bday ` R ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) )
161 159 160 syl
 |-  ( ph -> ( ( ( ( bday ` R ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) u. ( ( ( bday ` R ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) )
162 128 161 eqeltrid
 |-  ( ph -> ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( ( ( bday ` R ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) u. ( ( ( bday ` R ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) )
163 1 45 45 9 10 47 3 162 mulsproplem1
 |-  ( ph -> ( ( 0s x.s 0s ) e. No /\ ( ( R  ( ( R x.s B ) -s ( R x.s W ) ) 
164 163 simprd
 |-  ( ph -> ( ( R  ( ( R x.s B ) -s ( R x.s W ) ) 
165 125 164 mpan2d
 |-  ( ph -> ( R  ( ( R x.s B ) -s ( R x.s W ) ) 
166 165 imp
 |-  ( ( ph /\ R  ( ( R x.s B ) -s ( R x.s W ) ) 
167 15 27 subscld
 |-  ( ph -> ( ( R x.s B ) -s ( R x.s W ) ) e. No )
168 31 33 subscld
 |-  ( ph -> ( ( V x.s B ) -s ( V x.s W ) ) e. No )
169 167 168 25 sltadd1d
 |-  ( ph -> ( ( ( R x.s B ) -s ( R x.s W ) )  ( ( ( R x.s B ) -s ( R x.s W ) ) +s ( A x.s W ) ) 
170 169 adantr
 |-  ( ( ph /\ R  ( ( ( R x.s B ) -s ( R x.s W ) )  ( ( ( R x.s B ) -s ( R x.s W ) ) +s ( A x.s W ) ) 
171 166 170 mpbid
 |-  ( ( ph /\ R  ( ( ( R x.s B ) -s ( R x.s W ) ) +s ( A x.s W ) ) 
172 15 25 27 addsubsd
 |-  ( ph -> ( ( ( R x.s B ) +s ( A x.s W ) ) -s ( R x.s W ) ) = ( ( ( R x.s B ) -s ( R x.s W ) ) +s ( A x.s W ) ) )
173 172 adantr
 |-  ( ( ph /\ R  ( ( ( R x.s B ) +s ( A x.s W ) ) -s ( R x.s W ) ) = ( ( ( R x.s B ) -s ( R x.s W ) ) +s ( A x.s W ) ) )
174 31 25 33 addsubsd
 |-  ( ph -> ( ( ( V x.s B ) +s ( A x.s W ) ) -s ( V x.s W ) ) = ( ( ( V x.s B ) -s ( V x.s W ) ) +s ( A x.s W ) ) )
175 174 adantr
 |-  ( ( ph /\ R  ( ( ( V x.s B ) +s ( A x.s W ) ) -s ( V x.s W ) ) = ( ( ( V x.s B ) -s ( V x.s W ) ) +s ( A x.s W ) ) )
176 171 173 175 3brtr4d
 |-  ( ( ph /\ R  ( ( ( R x.s B ) +s ( A x.s W ) ) -s ( R x.s W ) ) 
177 22 29 35 120 176 slttrd
 |-  ( ( ph /\ R  ( ( ( R x.s B ) +s ( A x.s S ) ) -s ( R x.s S ) ) 
178 177 ex
 |-  ( ph -> ( R  ( ( ( R x.s B ) +s ( A x.s S ) ) -s ( R x.s S ) ) 
179 37 39 6 ssltsepcd
 |-  ( ph -> A 
180 55 uneq1i
 |-  ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` S ) ) ) u. ( ( ( bday ` A ) +no ( bday ` S ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) ) ) = ( (/) u. ( ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` S ) ) ) u. ( ( ( bday ` A ) +no ( bday ` S ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) ) )
181 0un
 |-  ( (/) u. ( ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` S ) ) ) u. ( ( ( bday ` A ) +no ( bday ` S ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) ) ) = ( ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` S ) ) ) u. ( ( ( bday ` A ) +no ( bday ` S ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) )
182 180 181 eqtri
 |-  ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` S ) ) ) u. ( ( ( bday ` A ) +no ( bday ` S ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) ) ) = ( ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` S ) ) ) u. ( ( ( bday ` A ) +no ( bday ` S ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) )
183 naddel12
 |-  ( ( ( bday ` A ) e. On /\ ( bday ` B ) e. On ) -> ( ( ( bday ` V ) e. ( bday ` A ) /\ ( bday ` S ) e. ( bday ` B ) ) -> ( ( bday ` V ) +no ( bday ` S ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) )
184 63 62 183 mp2an
 |-  ( ( ( bday ` V ) e. ( bday ` A ) /\ ( bday ` S ) e. ( bday ` B ) ) -> ( ( bday ` V ) +no ( bday ` S ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) )
185 130 70 184 syl2anc
 |-  ( ph -> ( ( bday ` V ) +no ( bday ` S ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) )
186 66 185 jca
 |-  ( ph -> ( ( ( bday ` A ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` V ) +no ( bday ` S ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) )
187 78 141 jca
 |-  ( ph -> ( ( ( bday ` A ) +no ( bday ` S ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` V ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) )
188 naddcl
 |-  ( ( ( bday ` V ) e. On /\ ( bday ` S ) e. On ) -> ( ( bday ` V ) +no ( bday ` S ) ) e. On )
189 131 75 188 mp2an
 |-  ( ( bday ` V ) +no ( bday ` S ) ) e. On
190 84 189 onun2i
 |-  ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` S ) ) ) e. On
191 90 149 onun2i
 |-  ( ( ( bday ` A ) +no ( bday ` S ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) e. On
192 onunel
 |-  ( ( ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` S ) ) ) e. On /\ ( ( ( bday ` A ) +no ( bday ` S ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) e. On /\ ( ( bday ` A ) +no ( bday ` B ) ) e. On ) -> ( ( ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` S ) ) ) u. ( ( ( bday ` A ) +no ( bday ` S ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` S ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( ( bday ` A ) +no ( bday ` S ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) )
193 190 191 95 192 mp3an
 |-  ( ( ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` S ) ) ) u. ( ( ( bday ` A ) +no ( bday ` S ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` S ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( ( bday ` A ) +no ( bday ` S ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) )
194 onunel
 |-  ( ( ( ( bday ` A ) +no ( bday ` W ) ) e. On /\ ( ( bday ` V ) +no ( bday ` S ) ) e. On /\ ( ( bday ` A ) +no ( bday ` B ) ) e. On ) -> ( ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` S ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( bday ` A ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` V ) +no ( bday ` S ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) )
195 84 189 95 194 mp3an
 |-  ( ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` S ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( bday ` A ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` V ) +no ( bday ` S ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) )
196 onunel
 |-  ( ( ( ( bday ` A ) +no ( bday ` S ) ) e. On /\ ( ( bday ` V ) +no ( bday ` W ) ) e. On /\ ( ( bday ` A ) +no ( bday ` B ) ) e. On ) -> ( ( ( ( bday ` A ) +no ( bday ` S ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( bday ` A ) +no ( bday ` S ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` V ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) )
197 90 149 95 196 mp3an
 |-  ( ( ( ( bday ` A ) +no ( bday ` S ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( bday ` A ) +no ( bday ` S ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` V ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) )
198 195 197 anbi12i
 |-  ( ( ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` S ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( ( bday ` A ) +no ( bday ` S ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) <-> ( ( ( ( bday ` A ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` V ) +no ( bday ` S ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) /\ ( ( ( bday ` A ) +no ( bday ` S ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` V ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) )
199 193 198 bitri
 |-  ( ( ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` S ) ) ) u. ( ( ( bday ` A ) +no ( bday ` S ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( ( bday ` A ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` V ) +no ( bday ` S ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) /\ ( ( ( bday ` A ) +no ( bday ` S ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` V ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) )
200 186 187 199 sylanbrc
 |-  ( ph -> ( ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` S ) ) ) u. ( ( ( bday ` A ) +no ( bday ` S ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) )
201 elun1
 |-  ( ( ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` S ) ) ) u. ( ( ( bday ` A ) +no ( bday ` S ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) -> ( ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` S ) ) ) u. ( ( ( bday ` A ) +no ( bday ` S ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) )
202 200 201 syl
 |-  ( ph -> ( ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` S ) ) ) u. ( ( ( bday ` A ) +no ( bday ` S ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) )
203 182 202 eqeltrid
 |-  ( ph -> ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` S ) ) ) u. ( ( ( bday ` A ) +no ( bday ` S ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) )
204 1 45 45 2 10 47 49 203 mulsproplem1
 |-  ( ph -> ( ( 0s x.s 0s ) e. No /\ ( ( A  ( ( A x.s S ) -s ( A x.s W ) ) 
205 204 simprd
 |-  ( ph -> ( ( A  ( ( A x.s S ) -s ( A x.s W ) ) 
206 179 43 205 mp2and
 |-  ( ph -> ( ( A x.s S ) -s ( A x.s W ) ) 
207 1 30 17 mulsproplem4
 |-  ( ph -> ( V x.s S ) e. No )
208 18 207 25 33 sltsubsubbd
 |-  ( ph -> ( ( ( A x.s S ) -s ( A x.s W ) )  ( ( A x.s S ) -s ( V x.s S ) ) 
209 18 207 subscld
 |-  ( ph -> ( ( A x.s S ) -s ( V x.s S ) ) e. No )
210 25 33 subscld
 |-  ( ph -> ( ( A x.s W ) -s ( V x.s W ) ) e. No )
211 209 210 31 sltadd2d
 |-  ( ph -> ( ( ( A x.s S ) -s ( V x.s S ) )  ( ( V x.s B ) +s ( ( A x.s S ) -s ( V x.s S ) ) ) 
212 208 211 bitrd
 |-  ( ph -> ( ( ( A x.s S ) -s ( A x.s W ) )  ( ( V x.s B ) +s ( ( A x.s S ) -s ( V x.s S ) ) ) 
213 206 212 mpbid
 |-  ( ph -> ( ( V x.s B ) +s ( ( A x.s S ) -s ( V x.s S ) ) ) 
214 31 18 207 addsubsassd
 |-  ( ph -> ( ( ( V x.s B ) +s ( A x.s S ) ) -s ( V x.s S ) ) = ( ( V x.s B ) +s ( ( A x.s S ) -s ( V x.s S ) ) ) )
215 31 25 33 addsubsassd
 |-  ( ph -> ( ( ( V x.s B ) +s ( A x.s W ) ) -s ( V x.s W ) ) = ( ( V x.s B ) +s ( ( A x.s W ) -s ( V x.s W ) ) ) )
216 213 214 215 3brtr4d
 |-  ( ph -> ( ( ( V x.s B ) +s ( A x.s S ) ) -s ( V x.s S ) ) 
217 oveq1
 |-  ( R = V -> ( R x.s B ) = ( V x.s B ) )
218 217 oveq1d
 |-  ( R = V -> ( ( R x.s B ) +s ( A x.s S ) ) = ( ( V x.s B ) +s ( A x.s S ) ) )
219 oveq1
 |-  ( R = V -> ( R x.s S ) = ( V x.s S ) )
220 218 219 oveq12d
 |-  ( R = V -> ( ( ( R x.s B ) +s ( A x.s S ) ) -s ( R x.s S ) ) = ( ( ( V x.s B ) +s ( A x.s S ) ) -s ( V x.s S ) ) )
221 220 breq1d
 |-  ( R = V -> ( ( ( ( R x.s B ) +s ( A x.s S ) ) -s ( R x.s S ) )  ( ( ( V x.s B ) +s ( A x.s S ) ) -s ( V x.s S ) ) 
222 216 221 syl5ibrcom
 |-  ( ph -> ( R = V -> ( ( ( R x.s B ) +s ( A x.s S ) ) -s ( R x.s S ) ) 
223 21 adantr
 |-  ( ( ph /\ V  ( ( ( R x.s B ) +s ( A x.s S ) ) -s ( R x.s S ) ) e. No )
224 31 18 addscld
 |-  ( ph -> ( ( V x.s B ) +s ( A x.s S ) ) e. No )
225 224 207 subscld
 |-  ( ph -> ( ( ( V x.s B ) +s ( A x.s S ) ) -s ( V x.s S ) ) e. No )
226 225 adantr
 |-  ( ( ph /\ V  ( ( ( V x.s B ) +s ( A x.s S ) ) -s ( V x.s S ) ) e. No )
227 34 adantr
 |-  ( ( ph /\ V  ( ( ( V x.s B ) +s ( A x.s W ) ) -s ( V x.s W ) ) e. No )
228 ssltright
 |-  ( B e. No -> { B } <
229 3 228 syl
 |-  ( ph -> { B } <
230 229 124 5 ssltsepcd
 |-  ( ph -> B 
231 55 uneq1i
 |-  ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( ( ( bday ` V ) +no ( bday ` B ) ) u. ( ( bday ` R ) +no ( bday ` S ) ) ) u. ( ( ( bday ` V ) +no ( bday ` S ) ) u. ( ( bday ` R ) +no ( bday ` B ) ) ) ) ) = ( (/) u. ( ( ( ( bday ` V ) +no ( bday ` B ) ) u. ( ( bday ` R ) +no ( bday ` S ) ) ) u. ( ( ( bday ` V ) +no ( bday ` S ) ) u. ( ( bday ` R ) +no ( bday ` B ) ) ) ) )
232 0un
 |-  ( (/) u. ( ( ( ( bday ` V ) +no ( bday ` B ) ) u. ( ( bday ` R ) +no ( bday ` S ) ) ) u. ( ( ( bday ` V ) +no ( bday ` S ) ) u. ( ( bday ` R ) +no ( bday ` B ) ) ) ) ) = ( ( ( ( bday ` V ) +no ( bday ` B ) ) u. ( ( bday ` R ) +no ( bday ` S ) ) ) u. ( ( ( bday ` V ) +no ( bday ` S ) ) u. ( ( bday ` R ) +no ( bday ` B ) ) ) )
233 231 232 eqtri
 |-  ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( ( ( bday ` V ) +no ( bday ` B ) ) u. ( ( bday ` R ) +no ( bday ` S ) ) ) u. ( ( ( bday ` V ) +no ( bday ` S ) ) u. ( ( bday ` R ) +no ( bday ` B ) ) ) ) ) = ( ( ( ( bday ` V ) +no ( bday ` B ) ) u. ( ( bday ` R ) +no ( bday ` S ) ) ) u. ( ( ( bday ` V ) +no ( bday ` S ) ) u. ( ( bday ` R ) +no ( bday ` B ) ) ) )
234 134 73 jca
 |-  ( ph -> ( ( ( bday ` V ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` R ) +no ( bday ` S ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) )
235 185 138 jca
 |-  ( ph -> ( ( ( bday ` V ) +no ( bday ` S ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` R ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) )
236 144 87 onun2i
 |-  ( ( ( bday ` V ) +no ( bday ` B ) ) u. ( ( bday ` R ) +no ( bday ` S ) ) ) e. On
237 189 147 onun2i
 |-  ( ( ( bday ` V ) +no ( bday ` S ) ) u. ( ( bday ` R ) +no ( bday ` B ) ) ) e. On
238 onunel
 |-  ( ( ( ( ( bday ` V ) +no ( bday ` B ) ) u. ( ( bday ` R ) +no ( bday ` S ) ) ) e. On /\ ( ( ( bday ` V ) +no ( bday ` S ) ) u. ( ( bday ` R ) +no ( bday ` B ) ) ) e. On /\ ( ( bday ` A ) +no ( bday ` B ) ) e. On ) -> ( ( ( ( ( bday ` V ) +no ( bday ` B ) ) u. ( ( bday ` R ) +no ( bday ` S ) ) ) u. ( ( ( bday ` V ) +no ( bday ` S ) ) u. ( ( bday ` R ) +no ( bday ` B ) ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( ( bday ` V ) +no ( bday ` B ) ) u. ( ( bday ` R ) +no ( bday ` S ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( ( bday ` V ) +no ( bday ` S ) ) u. ( ( bday ` R ) +no ( bday ` B ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) )
239 236 237 95 238 mp3an
 |-  ( ( ( ( ( bday ` V ) +no ( bday ` B ) ) u. ( ( bday ` R ) +no ( bday ` S ) ) ) u. ( ( ( bday ` V ) +no ( bday ` S ) ) u. ( ( bday ` R ) +no ( bday ` B ) ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( ( bday ` V ) +no ( bday ` B ) ) u. ( ( bday ` R ) +no ( bday ` S ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( ( bday ` V ) +no ( bday ` S ) ) u. ( ( bday ` R ) +no ( bday ` B ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) )
240 onunel
 |-  ( ( ( ( bday ` V ) +no ( bday ` B ) ) e. On /\ ( ( bday ` R ) +no ( bday ` S ) ) e. On /\ ( ( bday ` A ) +no ( bday ` B ) ) e. On ) -> ( ( ( ( bday ` V ) +no ( bday ` B ) ) u. ( ( bday ` R ) +no ( bday ` S ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( bday ` V ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` R ) +no ( bday ` S ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) )
241 144 87 95 240 mp3an
 |-  ( ( ( ( bday ` V ) +no ( bday ` B ) ) u. ( ( bday ` R ) +no ( bday ` S ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( bday ` V ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` R ) +no ( bday ` S ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) )
242 onunel
 |-  ( ( ( ( bday ` V ) +no ( bday ` S ) ) e. On /\ ( ( bday ` R ) +no ( bday ` B ) ) e. On /\ ( ( bday ` A ) +no ( bday ` B ) ) e. On ) -> ( ( ( ( bday ` V ) +no ( bday ` S ) ) u. ( ( bday ` R ) +no ( bday ` B ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( bday ` V ) +no ( bday ` S ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` R ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) )
243 189 147 95 242 mp3an
 |-  ( ( ( ( bday ` V ) +no ( bday ` S ) ) u. ( ( bday ` R ) +no ( bday ` B ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( bday ` V ) +no ( bday ` S ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` R ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) )
244 241 243 anbi12i
 |-  ( ( ( ( ( bday ` V ) +no ( bday ` B ) ) u. ( ( bday ` R ) +no ( bday ` S ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( ( bday ` V ) +no ( bday ` S ) ) u. ( ( bday ` R ) +no ( bday ` B ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) <-> ( ( ( ( bday ` V ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` R ) +no ( bday ` S ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) /\ ( ( ( bday ` V ) +no ( bday ` S ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` R ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) )
245 239 244 bitri
 |-  ( ( ( ( ( bday ` V ) +no ( bday ` B ) ) u. ( ( bday ` R ) +no ( bday ` S ) ) ) u. ( ( ( bday ` V ) +no ( bday ` S ) ) u. ( ( bday ` R ) +no ( bday ` B ) ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( ( bday ` V ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` R ) +no ( bday ` S ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) /\ ( ( ( bday ` V ) +no ( bday ` S ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` R ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) )
246 234 235 245 sylanbrc
 |-  ( ph -> ( ( ( ( bday ` V ) +no ( bday ` B ) ) u. ( ( bday ` R ) +no ( bday ` S ) ) ) u. ( ( ( bday ` V ) +no ( bday ` S ) ) u. ( ( bday ` R ) +no ( bday ` B ) ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) )
247 elun1
 |-  ( ( ( ( ( bday ` V ) +no ( bday ` B ) ) u. ( ( bday ` R ) +no ( bday ` S ) ) ) u. ( ( ( bday ` V ) +no ( bday ` S ) ) u. ( ( bday ` R ) +no ( bday ` B ) ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) -> ( ( ( ( bday ` V ) +no ( bday ` B ) ) u. ( ( bday ` R ) +no ( bday ` S ) ) ) u. ( ( ( bday ` V ) +no ( bday ` S ) ) u. ( ( bday ` R ) +no ( bday ` B ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) )
248 246 247 syl
 |-  ( ph -> ( ( ( ( bday ` V ) +no ( bday ` B ) ) u. ( ( bday ` R ) +no ( bday ` S ) ) ) u. ( ( ( bday ` V ) +no ( bday ` S ) ) u. ( ( bday ` R ) +no ( bday ` B ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) )
249 233 248 eqeltrid
 |-  ( ph -> ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( ( ( bday ` V ) +no ( bday ` B ) ) u. ( ( bday ` R ) +no ( bday ` S ) ) ) u. ( ( ( bday ` V ) +no ( bday ` S ) ) u. ( ( bday ` R ) +no ( bday ` B ) ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) )
250 1 45 45 10 9 3 49 249 mulsproplem1
 |-  ( ph -> ( ( 0s x.s 0s ) e. No /\ ( ( V  ( ( V x.s S ) -s ( V x.s B ) ) 
251 250 simprd
 |-  ( ph -> ( ( V  ( ( V x.s S ) -s ( V x.s B ) ) 
252 230 251 mpan2d
 |-  ( ph -> ( V  ( ( V x.s S ) -s ( V x.s B ) ) 
253 252 imp
 |-  ( ( ph /\ V  ( ( V x.s S ) -s ( V x.s B ) ) 
254 207 31 20 15 sltsubsub2bd
 |-  ( ph -> ( ( ( V x.s S ) -s ( V x.s B ) )  ( ( R x.s B ) -s ( R x.s S ) ) 
255 15 20 subscld
 |-  ( ph -> ( ( R x.s B ) -s ( R x.s S ) ) e. No )
256 31 207 subscld
 |-  ( ph -> ( ( V x.s B ) -s ( V x.s S ) ) e. No )
257 255 256 18 sltadd1d
 |-  ( ph -> ( ( ( R x.s B ) -s ( R x.s S ) )  ( ( ( R x.s B ) -s ( R x.s S ) ) +s ( A x.s S ) ) 
258 254 257 bitrd
 |-  ( ph -> ( ( ( V x.s S ) -s ( V x.s B ) )  ( ( ( R x.s B ) -s ( R x.s S ) ) +s ( A x.s S ) ) 
259 258 adantr
 |-  ( ( ph /\ V  ( ( ( V x.s S ) -s ( V x.s B ) )  ( ( ( R x.s B ) -s ( R x.s S ) ) +s ( A x.s S ) ) 
260 253 259 mpbid
 |-  ( ( ph /\ V  ( ( ( R x.s B ) -s ( R x.s S ) ) +s ( A x.s S ) ) 
261 15 18 20 addsubsd
 |-  ( ph -> ( ( ( R x.s B ) +s ( A x.s S ) ) -s ( R x.s S ) ) = ( ( ( R x.s B ) -s ( R x.s S ) ) +s ( A x.s S ) ) )
262 261 adantr
 |-  ( ( ph /\ V  ( ( ( R x.s B ) +s ( A x.s S ) ) -s ( R x.s S ) ) = ( ( ( R x.s B ) -s ( R x.s S ) ) +s ( A x.s S ) ) )
263 31 18 207 addsubsd
 |-  ( ph -> ( ( ( V x.s B ) +s ( A x.s S ) ) -s ( V x.s S ) ) = ( ( ( V x.s B ) -s ( V x.s S ) ) +s ( A x.s S ) ) )
264 263 adantr
 |-  ( ( ph /\ V  ( ( ( V x.s B ) +s ( A x.s S ) ) -s ( V x.s S ) ) = ( ( ( V x.s B ) -s ( V x.s S ) ) +s ( A x.s S ) ) )
265 260 262 264 3brtr4d
 |-  ( ( ph /\ V  ( ( ( R x.s B ) +s ( A x.s S ) ) -s ( R x.s S ) ) 
266 216 adantr
 |-  ( ( ph /\ V  ( ( ( V x.s B ) +s ( A x.s S ) ) -s ( V x.s S ) ) 
267 223 226 227 265 266 slttrd
 |-  ( ( ph /\ V  ( ( ( R x.s B ) +s ( A x.s S ) ) -s ( R x.s S ) ) 
268 267 ex
 |-  ( ph -> ( V  ( ( ( R x.s B ) +s ( A x.s S ) ) -s ( R x.s S ) ) 
269 178 222 268 3jaod
 |-  ( ph -> ( ( R  ( ( ( R x.s B ) +s ( A x.s S ) ) -s ( R x.s S ) ) 
270 12 269 mpd
 |-  ( ph -> ( ( ( R x.s B ) +s ( A x.s S ) ) -s ( R x.s S ) )