Step |
Hyp |
Ref |
Expression |
1 |
|
mulsproplem.1 |
|- ( ph -> A. a e. No A. b e. No A. c e. No A. d e. No A. e e. No A. f e. No ( ( ( ( bday ` a ) +no ( bday ` b ) ) u. ( ( ( ( bday ` c ) +no ( bday ` e ) ) u. ( ( bday ` d ) +no ( bday ` f ) ) ) u. ( ( ( bday ` c ) +no ( bday ` f ) ) u. ( ( bday ` d ) +no ( bday ` e ) ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) -> ( ( a x.s b ) e. No /\ ( ( c ( ( c x.s f ) -s ( c x.s e ) ) |
2 |
|
mulsproplem8.1 |
|- ( ph -> A e. No ) |
3 |
|
mulsproplem8.2 |
|- ( ph -> B e. No ) |
4 |
|
mulsproplem8.3 |
|- ( ph -> R e. ( _Right ` A ) ) |
5 |
|
mulsproplem8.4 |
|- ( ph -> S e. ( _Right ` B ) ) |
6 |
|
mulsproplem8.5 |
|- ( ph -> V e. ( _Right ` A ) ) |
7 |
|
mulsproplem8.6 |
|- ( ph -> W e. ( _Left ` B ) ) |
8 |
|
rightssno |
|- ( _Right ` A ) C_ No |
9 |
8 4
|
sselid |
|- ( ph -> R e. No ) |
10 |
8 6
|
sselid |
|- ( ph -> V e. No ) |
11 |
|
sltlin |
|- ( ( R e. No /\ V e. No ) -> ( R |
12 |
9 10 11
|
syl2anc |
|- ( ph -> ( R |
13 |
|
rightssold |
|- ( _Right ` A ) C_ ( _Old ` ( bday ` A ) ) |
14 |
13 4
|
sselid |
|- ( ph -> R e. ( _Old ` ( bday ` A ) ) ) |
15 |
1 14 3
|
mulsproplem2 |
|- ( ph -> ( R x.s B ) e. No ) |
16 |
|
rightssold |
|- ( _Right ` B ) C_ ( _Old ` ( bday ` B ) ) |
17 |
16 5
|
sselid |
|- ( ph -> S e. ( _Old ` ( bday ` B ) ) ) |
18 |
1 2 17
|
mulsproplem3 |
|- ( ph -> ( A x.s S ) e. No ) |
19 |
15 18
|
addscld |
|- ( ph -> ( ( R x.s B ) +s ( A x.s S ) ) e. No ) |
20 |
1 14 17
|
mulsproplem4 |
|- ( ph -> ( R x.s S ) e. No ) |
21 |
19 20
|
subscld |
|- ( ph -> ( ( ( R x.s B ) +s ( A x.s S ) ) -s ( R x.s S ) ) e. No ) |
22 |
21
|
adantr |
|- ( ( ph /\ R ( ( ( R x.s B ) +s ( A x.s S ) ) -s ( R x.s S ) ) e. No ) |
23 |
|
leftssold |
|- ( _Left ` B ) C_ ( _Old ` ( bday ` B ) ) |
24 |
23 7
|
sselid |
|- ( ph -> W e. ( _Old ` ( bday ` B ) ) ) |
25 |
1 2 24
|
mulsproplem3 |
|- ( ph -> ( A x.s W ) e. No ) |
26 |
15 25
|
addscld |
|- ( ph -> ( ( R x.s B ) +s ( A x.s W ) ) e. No ) |
27 |
1 14 24
|
mulsproplem4 |
|- ( ph -> ( R x.s W ) e. No ) |
28 |
26 27
|
subscld |
|- ( ph -> ( ( ( R x.s B ) +s ( A x.s W ) ) -s ( R x.s W ) ) e. No ) |
29 |
28
|
adantr |
|- ( ( ph /\ R ( ( ( R x.s B ) +s ( A x.s W ) ) -s ( R x.s W ) ) e. No ) |
30 |
13 6
|
sselid |
|- ( ph -> V e. ( _Old ` ( bday ` A ) ) ) |
31 |
1 30 3
|
mulsproplem2 |
|- ( ph -> ( V x.s B ) e. No ) |
32 |
31 25
|
addscld |
|- ( ph -> ( ( V x.s B ) +s ( A x.s W ) ) e. No ) |
33 |
1 30 24
|
mulsproplem4 |
|- ( ph -> ( V x.s W ) e. No ) |
34 |
32 33
|
subscld |
|- ( ph -> ( ( ( V x.s B ) +s ( A x.s W ) ) -s ( V x.s W ) ) e. No ) |
35 |
34
|
adantr |
|- ( ( ph /\ R ( ( ( V x.s B ) +s ( A x.s W ) ) -s ( V x.s W ) ) e. No ) |
36 |
|
ssltright |
|- ( A e. No -> { A } < |
37 |
2 36
|
syl |
|- ( ph -> { A } < |
38 |
|
snidg |
|- ( A e. No -> A e. { A } ) |
39 |
2 38
|
syl |
|- ( ph -> A e. { A } ) |
40 |
37 39 4
|
ssltsepcd |
|- ( ph -> A |
41 |
|
lltropt |
|- ( _Left ` B ) < |
42 |
41
|
a1i |
|- ( ph -> ( _Left ` B ) < |
43 |
42 7 5
|
ssltsepcd |
|- ( ph -> W |
44 |
|
0sno |
|- 0s e. No |
45 |
44
|
a1i |
|- ( ph -> 0s e. No ) |
46 |
|
leftssno |
|- ( _Left ` B ) C_ No |
47 |
46 7
|
sselid |
|- ( ph -> W e. No ) |
48 |
|
rightssno |
|- ( _Right ` B ) C_ No |
49 |
48 5
|
sselid |
|- ( ph -> S e. No ) |
50 |
|
bday0s |
|- ( bday ` 0s ) = (/) |
51 |
50 50
|
oveq12i |
|- ( ( bday ` 0s ) +no ( bday ` 0s ) ) = ( (/) +no (/) ) |
52 |
|
0elon |
|- (/) e. On |
53 |
|
naddrid |
|- ( (/) e. On -> ( (/) +no (/) ) = (/) ) |
54 |
52 53
|
ax-mp |
|- ( (/) +no (/) ) = (/) |
55 |
51 54
|
eqtri |
|- ( ( bday ` 0s ) +no ( bday ` 0s ) ) = (/) |
56 |
55
|
uneq1i |
|- ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` R ) +no ( bday ` S ) ) ) u. ( ( ( bday ` A ) +no ( bday ` S ) ) u. ( ( bday ` R ) +no ( bday ` W ) ) ) ) ) = ( (/) u. ( ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` R ) +no ( bday ` S ) ) ) u. ( ( ( bday ` A ) +no ( bday ` S ) ) u. ( ( bday ` R ) +no ( bday ` W ) ) ) ) ) |
57 |
|
0un |
|- ( (/) u. ( ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` R ) +no ( bday ` S ) ) ) u. ( ( ( bday ` A ) +no ( bday ` S ) ) u. ( ( bday ` R ) +no ( bday ` W ) ) ) ) ) = ( ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` R ) +no ( bday ` S ) ) ) u. ( ( ( bday ` A ) +no ( bday ` S ) ) u. ( ( bday ` R ) +no ( bday ` W ) ) ) ) |
58 |
56 57
|
eqtri |
|- ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` R ) +no ( bday ` S ) ) ) u. ( ( ( bday ` A ) +no ( bday ` S ) ) u. ( ( bday ` R ) +no ( bday ` W ) ) ) ) ) = ( ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` R ) +no ( bday ` S ) ) ) u. ( ( ( bday ` A ) +no ( bday ` S ) ) u. ( ( bday ` R ) +no ( bday ` W ) ) ) ) |
59 |
|
oldbdayim |
|- ( W e. ( _Old ` ( bday ` B ) ) -> ( bday ` W ) e. ( bday ` B ) ) |
60 |
24 59
|
syl |
|- ( ph -> ( bday ` W ) e. ( bday ` B ) ) |
61 |
|
bdayelon |
|- ( bday ` W ) e. On |
62 |
|
bdayelon |
|- ( bday ` B ) e. On |
63 |
|
bdayelon |
|- ( bday ` A ) e. On |
64 |
|
naddel2 |
|- ( ( ( bday ` W ) e. On /\ ( bday ` B ) e. On /\ ( bday ` A ) e. On ) -> ( ( bday ` W ) e. ( bday ` B ) <-> ( ( bday ` A ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) |
65 |
61 62 63 64
|
mp3an |
|- ( ( bday ` W ) e. ( bday ` B ) <-> ( ( bday ` A ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) |
66 |
60 65
|
sylib |
|- ( ph -> ( ( bday ` A ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) |
67 |
|
oldbdayim |
|- ( R e. ( _Old ` ( bday ` A ) ) -> ( bday ` R ) e. ( bday ` A ) ) |
68 |
14 67
|
syl |
|- ( ph -> ( bday ` R ) e. ( bday ` A ) ) |
69 |
|
oldbdayim |
|- ( S e. ( _Old ` ( bday ` B ) ) -> ( bday ` S ) e. ( bday ` B ) ) |
70 |
17 69
|
syl |
|- ( ph -> ( bday ` S ) e. ( bday ` B ) ) |
71 |
|
naddel12 |
|- ( ( ( bday ` A ) e. On /\ ( bday ` B ) e. On ) -> ( ( ( bday ` R ) e. ( bday ` A ) /\ ( bday ` S ) e. ( bday ` B ) ) -> ( ( bday ` R ) +no ( bday ` S ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) |
72 |
63 62 71
|
mp2an |
|- ( ( ( bday ` R ) e. ( bday ` A ) /\ ( bday ` S ) e. ( bday ` B ) ) -> ( ( bday ` R ) +no ( bday ` S ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) |
73 |
68 70 72
|
syl2anc |
|- ( ph -> ( ( bday ` R ) +no ( bday ` S ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) |
74 |
66 73
|
jca |
|- ( ph -> ( ( ( bday ` A ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` R ) +no ( bday ` S ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) |
75 |
|
bdayelon |
|- ( bday ` S ) e. On |
76 |
|
naddel2 |
|- ( ( ( bday ` S ) e. On /\ ( bday ` B ) e. On /\ ( bday ` A ) e. On ) -> ( ( bday ` S ) e. ( bday ` B ) <-> ( ( bday ` A ) +no ( bday ` S ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) |
77 |
75 62 63 76
|
mp3an |
|- ( ( bday ` S ) e. ( bday ` B ) <-> ( ( bday ` A ) +no ( bday ` S ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) |
78 |
70 77
|
sylib |
|- ( ph -> ( ( bday ` A ) +no ( bday ` S ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) |
79 |
|
naddel12 |
|- ( ( ( bday ` A ) e. On /\ ( bday ` B ) e. On ) -> ( ( ( bday ` R ) e. ( bday ` A ) /\ ( bday ` W ) e. ( bday ` B ) ) -> ( ( bday ` R ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) |
80 |
63 62 79
|
mp2an |
|- ( ( ( bday ` R ) e. ( bday ` A ) /\ ( bday ` W ) e. ( bday ` B ) ) -> ( ( bday ` R ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) |
81 |
68 60 80
|
syl2anc |
|- ( ph -> ( ( bday ` R ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) |
82 |
78 81
|
jca |
|- ( ph -> ( ( ( bday ` A ) +no ( bday ` S ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` R ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) |
83 |
|
naddcl |
|- ( ( ( bday ` A ) e. On /\ ( bday ` W ) e. On ) -> ( ( bday ` A ) +no ( bday ` W ) ) e. On ) |
84 |
63 61 83
|
mp2an |
|- ( ( bday ` A ) +no ( bday ` W ) ) e. On |
85 |
|
bdayelon |
|- ( bday ` R ) e. On |
86 |
|
naddcl |
|- ( ( ( bday ` R ) e. On /\ ( bday ` S ) e. On ) -> ( ( bday ` R ) +no ( bday ` S ) ) e. On ) |
87 |
85 75 86
|
mp2an |
|- ( ( bday ` R ) +no ( bday ` S ) ) e. On |
88 |
84 87
|
onun2i |
|- ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` R ) +no ( bday ` S ) ) ) e. On |
89 |
|
naddcl |
|- ( ( ( bday ` A ) e. On /\ ( bday ` S ) e. On ) -> ( ( bday ` A ) +no ( bday ` S ) ) e. On ) |
90 |
63 75 89
|
mp2an |
|- ( ( bday ` A ) +no ( bday ` S ) ) e. On |
91 |
|
naddcl |
|- ( ( ( bday ` R ) e. On /\ ( bday ` W ) e. On ) -> ( ( bday ` R ) +no ( bday ` W ) ) e. On ) |
92 |
85 61 91
|
mp2an |
|- ( ( bday ` R ) +no ( bday ` W ) ) e. On |
93 |
90 92
|
onun2i |
|- ( ( ( bday ` A ) +no ( bday ` S ) ) u. ( ( bday ` R ) +no ( bday ` W ) ) ) e. On |
94 |
|
naddcl |
|- ( ( ( bday ` A ) e. On /\ ( bday ` B ) e. On ) -> ( ( bday ` A ) +no ( bday ` B ) ) e. On ) |
95 |
63 62 94
|
mp2an |
|- ( ( bday ` A ) +no ( bday ` B ) ) e. On |
96 |
|
onunel |
|- ( ( ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` R ) +no ( bday ` S ) ) ) e. On /\ ( ( ( bday ` A ) +no ( bday ` S ) ) u. ( ( bday ` R ) +no ( bday ` W ) ) ) e. On /\ ( ( bday ` A ) +no ( bday ` B ) ) e. On ) -> ( ( ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` R ) +no ( bday ` S ) ) ) u. ( ( ( bday ` A ) +no ( bday ` S ) ) u. ( ( bday ` R ) +no ( bday ` W ) ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` R ) +no ( bday ` S ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( ( bday ` A ) +no ( bday ` S ) ) u. ( ( bday ` R ) +no ( bday ` W ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) ) |
97 |
88 93 95 96
|
mp3an |
|- ( ( ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` R ) +no ( bday ` S ) ) ) u. ( ( ( bday ` A ) +no ( bday ` S ) ) u. ( ( bday ` R ) +no ( bday ` W ) ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` R ) +no ( bday ` S ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( ( bday ` A ) +no ( bday ` S ) ) u. ( ( bday ` R ) +no ( bday ` W ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) |
98 |
|
onunel |
|- ( ( ( ( bday ` A ) +no ( bday ` W ) ) e. On /\ ( ( bday ` R ) +no ( bday ` S ) ) e. On /\ ( ( bday ` A ) +no ( bday ` B ) ) e. On ) -> ( ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` R ) +no ( bday ` S ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( bday ` A ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` R ) +no ( bday ` S ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) ) |
99 |
84 87 95 98
|
mp3an |
|- ( ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` R ) +no ( bday ` S ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( bday ` A ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` R ) +no ( bday ` S ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) |
100 |
|
onunel |
|- ( ( ( ( bday ` A ) +no ( bday ` S ) ) e. On /\ ( ( bday ` R ) +no ( bday ` W ) ) e. On /\ ( ( bday ` A ) +no ( bday ` B ) ) e. On ) -> ( ( ( ( bday ` A ) +no ( bday ` S ) ) u. ( ( bday ` R ) +no ( bday ` W ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( bday ` A ) +no ( bday ` S ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` R ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) ) |
101 |
90 92 95 100
|
mp3an |
|- ( ( ( ( bday ` A ) +no ( bday ` S ) ) u. ( ( bday ` R ) +no ( bday ` W ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( bday ` A ) +no ( bday ` S ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` R ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) |
102 |
99 101
|
anbi12i |
|- ( ( ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` R ) +no ( bday ` S ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( ( bday ` A ) +no ( bday ` S ) ) u. ( ( bday ` R ) +no ( bday ` W ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) <-> ( ( ( ( bday ` A ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` R ) +no ( bday ` S ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) /\ ( ( ( bday ` A ) +no ( bday ` S ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` R ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) ) |
103 |
97 102
|
bitri |
|- ( ( ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` R ) +no ( bday ` S ) ) ) u. ( ( ( bday ` A ) +no ( bday ` S ) ) u. ( ( bday ` R ) +no ( bday ` W ) ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( ( bday ` A ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` R ) +no ( bday ` S ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) /\ ( ( ( bday ` A ) +no ( bday ` S ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` R ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) ) |
104 |
74 82 103
|
sylanbrc |
|- ( ph -> ( ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` R ) +no ( bday ` S ) ) ) u. ( ( ( bday ` A ) +no ( bday ` S ) ) u. ( ( bday ` R ) +no ( bday ` W ) ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) |
105 |
|
elun1 |
|- ( ( ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` R ) +no ( bday ` S ) ) ) u. ( ( ( bday ` A ) +no ( bday ` S ) ) u. ( ( bday ` R ) +no ( bday ` W ) ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) -> ( ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` R ) +no ( bday ` S ) ) ) u. ( ( ( bday ` A ) +no ( bday ` S ) ) u. ( ( bday ` R ) +no ( bday ` W ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) ) |
106 |
104 105
|
syl |
|- ( ph -> ( ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` R ) +no ( bday ` S ) ) ) u. ( ( ( bday ` A ) +no ( bday ` S ) ) u. ( ( bday ` R ) +no ( bday ` W ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) ) |
107 |
58 106
|
eqeltrid |
|- ( ph -> ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` R ) +no ( bday ` S ) ) ) u. ( ( ( bday ` A ) +no ( bday ` S ) ) u. ( ( bday ` R ) +no ( bday ` W ) ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) ) |
108 |
1 45 45 2 9 47 49 107
|
mulsproplem1 |
|- ( ph -> ( ( 0s x.s 0s ) e. No /\ ( ( A ( ( A x.s S ) -s ( A x.s W ) ) |
109 |
108
|
simprd |
|- ( ph -> ( ( A ( ( A x.s S ) -s ( A x.s W ) ) |
110 |
40 43 109
|
mp2and |
|- ( ph -> ( ( A x.s S ) -s ( A x.s W ) ) |
111 |
18 20 25 27
|
sltsubsubbd |
|- ( ph -> ( ( ( A x.s S ) -s ( A x.s W ) ) ( ( A x.s S ) -s ( R x.s S ) ) |
112 |
18 20
|
subscld |
|- ( ph -> ( ( A x.s S ) -s ( R x.s S ) ) e. No ) |
113 |
25 27
|
subscld |
|- ( ph -> ( ( A x.s W ) -s ( R x.s W ) ) e. No ) |
114 |
112 113 15
|
sltadd2d |
|- ( ph -> ( ( ( A x.s S ) -s ( R x.s S ) ) ( ( R x.s B ) +s ( ( A x.s S ) -s ( R x.s S ) ) ) |
115 |
111 114
|
bitrd |
|- ( ph -> ( ( ( A x.s S ) -s ( A x.s W ) ) ( ( R x.s B ) +s ( ( A x.s S ) -s ( R x.s S ) ) ) |
116 |
110 115
|
mpbid |
|- ( ph -> ( ( R x.s B ) +s ( ( A x.s S ) -s ( R x.s S ) ) ) |
117 |
15 18 20
|
addsubsassd |
|- ( ph -> ( ( ( R x.s B ) +s ( A x.s S ) ) -s ( R x.s S ) ) = ( ( R x.s B ) +s ( ( A x.s S ) -s ( R x.s S ) ) ) ) |
118 |
15 25 27
|
addsubsassd |
|- ( ph -> ( ( ( R x.s B ) +s ( A x.s W ) ) -s ( R x.s W ) ) = ( ( R x.s B ) +s ( ( A x.s W ) -s ( R x.s W ) ) ) ) |
119 |
116 117 118
|
3brtr4d |
|- ( ph -> ( ( ( R x.s B ) +s ( A x.s S ) ) -s ( R x.s S ) ) |
120 |
119
|
adantr |
|- ( ( ph /\ R ( ( ( R x.s B ) +s ( A x.s S ) ) -s ( R x.s S ) ) |
121 |
|
ssltleft |
|- ( B e. No -> ( _Left ` B ) < |
122 |
3 121
|
syl |
|- ( ph -> ( _Left ` B ) < |
123 |
|
snidg |
|- ( B e. No -> B e. { B } ) |
124 |
3 123
|
syl |
|- ( ph -> B e. { B } ) |
125 |
122 7 124
|
ssltsepcd |
|- ( ph -> W |
126 |
55
|
uneq1i |
|- ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( ( ( bday ` R ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) u. ( ( ( bday ` R ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) ) ) = ( (/) u. ( ( ( ( bday ` R ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) u. ( ( ( bday ` R ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) ) ) |
127 |
|
0un |
|- ( (/) u. ( ( ( ( bday ` R ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) u. ( ( ( bday ` R ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) ) ) = ( ( ( ( bday ` R ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) u. ( ( ( bday ` R ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) ) |
128 |
126 127
|
eqtri |
|- ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( ( ( bday ` R ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) u. ( ( ( bday ` R ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) ) ) = ( ( ( ( bday ` R ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) u. ( ( ( bday ` R ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) ) |
129 |
|
oldbdayim |
|- ( V e. ( _Old ` ( bday ` A ) ) -> ( bday ` V ) e. ( bday ` A ) ) |
130 |
30 129
|
syl |
|- ( ph -> ( bday ` V ) e. ( bday ` A ) ) |
131 |
|
bdayelon |
|- ( bday ` V ) e. On |
132 |
|
naddel1 |
|- ( ( ( bday ` V ) e. On /\ ( bday ` A ) e. On /\ ( bday ` B ) e. On ) -> ( ( bday ` V ) e. ( bday ` A ) <-> ( ( bday ` V ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) |
133 |
131 63 62 132
|
mp3an |
|- ( ( bday ` V ) e. ( bday ` A ) <-> ( ( bday ` V ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) |
134 |
130 133
|
sylib |
|- ( ph -> ( ( bday ` V ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) |
135 |
81 134
|
jca |
|- ( ph -> ( ( ( bday ` R ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` V ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) |
136 |
|
naddel1 |
|- ( ( ( bday ` R ) e. On /\ ( bday ` A ) e. On /\ ( bday ` B ) e. On ) -> ( ( bday ` R ) e. ( bday ` A ) <-> ( ( bday ` R ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) |
137 |
85 63 62 136
|
mp3an |
|- ( ( bday ` R ) e. ( bday ` A ) <-> ( ( bday ` R ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) |
138 |
68 137
|
sylib |
|- ( ph -> ( ( bday ` R ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) |
139 |
|
naddel12 |
|- ( ( ( bday ` A ) e. On /\ ( bday ` B ) e. On ) -> ( ( ( bday ` V ) e. ( bday ` A ) /\ ( bday ` W ) e. ( bday ` B ) ) -> ( ( bday ` V ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) |
140 |
63 62 139
|
mp2an |
|- ( ( ( bday ` V ) e. ( bday ` A ) /\ ( bday ` W ) e. ( bday ` B ) ) -> ( ( bday ` V ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) |
141 |
130 60 140
|
syl2anc |
|- ( ph -> ( ( bday ` V ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) |
142 |
138 141
|
jca |
|- ( ph -> ( ( ( bday ` R ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` V ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) |
143 |
|
naddcl |
|- ( ( ( bday ` V ) e. On /\ ( bday ` B ) e. On ) -> ( ( bday ` V ) +no ( bday ` B ) ) e. On ) |
144 |
131 62 143
|
mp2an |
|- ( ( bday ` V ) +no ( bday ` B ) ) e. On |
145 |
92 144
|
onun2i |
|- ( ( ( bday ` R ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) e. On |
146 |
|
naddcl |
|- ( ( ( bday ` R ) e. On /\ ( bday ` B ) e. On ) -> ( ( bday ` R ) +no ( bday ` B ) ) e. On ) |
147 |
85 62 146
|
mp2an |
|- ( ( bday ` R ) +no ( bday ` B ) ) e. On |
148 |
|
naddcl |
|- ( ( ( bday ` V ) e. On /\ ( bday ` W ) e. On ) -> ( ( bday ` V ) +no ( bday ` W ) ) e. On ) |
149 |
131 61 148
|
mp2an |
|- ( ( bday ` V ) +no ( bday ` W ) ) e. On |
150 |
147 149
|
onun2i |
|- ( ( ( bday ` R ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) e. On |
151 |
|
onunel |
|- ( ( ( ( ( bday ` R ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) e. On /\ ( ( ( bday ` R ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) e. On /\ ( ( bday ` A ) +no ( bday ` B ) ) e. On ) -> ( ( ( ( ( bday ` R ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) u. ( ( ( bday ` R ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( ( bday ` R ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( ( bday ` R ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) ) |
152 |
145 150 95 151
|
mp3an |
|- ( ( ( ( ( bday ` R ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) u. ( ( ( bday ` R ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( ( bday ` R ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( ( bday ` R ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) |
153 |
|
onunel |
|- ( ( ( ( bday ` R ) +no ( bday ` W ) ) e. On /\ ( ( bday ` V ) +no ( bday ` B ) ) e. On /\ ( ( bday ` A ) +no ( bday ` B ) ) e. On ) -> ( ( ( ( bday ` R ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( bday ` R ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` V ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) ) |
154 |
92 144 95 153
|
mp3an |
|- ( ( ( ( bday ` R ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( bday ` R ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` V ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) |
155 |
|
onunel |
|- ( ( ( ( bday ` R ) +no ( bday ` B ) ) e. On /\ ( ( bday ` V ) +no ( bday ` W ) ) e. On /\ ( ( bday ` A ) +no ( bday ` B ) ) e. On ) -> ( ( ( ( bday ` R ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( bday ` R ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` V ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) ) |
156 |
147 149 95 155
|
mp3an |
|- ( ( ( ( bday ` R ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( bday ` R ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` V ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) |
157 |
154 156
|
anbi12i |
|- ( ( ( ( ( bday ` R ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( ( bday ` R ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) <-> ( ( ( ( bday ` R ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` V ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) /\ ( ( ( bday ` R ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` V ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) ) |
158 |
152 157
|
bitri |
|- ( ( ( ( ( bday ` R ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) u. ( ( ( bday ` R ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( ( bday ` R ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` V ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) /\ ( ( ( bday ` R ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` V ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) ) |
159 |
135 142 158
|
sylanbrc |
|- ( ph -> ( ( ( ( bday ` R ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) u. ( ( ( bday ` R ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) |
160 |
|
elun1 |
|- ( ( ( ( ( bday ` R ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) u. ( ( ( bday ` R ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) -> ( ( ( ( bday ` R ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) u. ( ( ( bday ` R ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) ) |
161 |
159 160
|
syl |
|- ( ph -> ( ( ( ( bday ` R ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) u. ( ( ( bday ` R ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) ) |
162 |
128 161
|
eqeltrid |
|- ( ph -> ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( ( ( bday ` R ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` B ) ) ) u. ( ( ( bday ` R ) +no ( bday ` B ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) ) |
163 |
1 45 45 9 10 47 3 162
|
mulsproplem1 |
|- ( ph -> ( ( 0s x.s 0s ) e. No /\ ( ( R ( ( R x.s B ) -s ( R x.s W ) ) |
164 |
163
|
simprd |
|- ( ph -> ( ( R ( ( R x.s B ) -s ( R x.s W ) ) |
165 |
125 164
|
mpan2d |
|- ( ph -> ( R ( ( R x.s B ) -s ( R x.s W ) ) |
166 |
165
|
imp |
|- ( ( ph /\ R ( ( R x.s B ) -s ( R x.s W ) ) |
167 |
15 27
|
subscld |
|- ( ph -> ( ( R x.s B ) -s ( R x.s W ) ) e. No ) |
168 |
31 33
|
subscld |
|- ( ph -> ( ( V x.s B ) -s ( V x.s W ) ) e. No ) |
169 |
167 168 25
|
sltadd1d |
|- ( ph -> ( ( ( R x.s B ) -s ( R x.s W ) ) ( ( ( R x.s B ) -s ( R x.s W ) ) +s ( A x.s W ) ) |
170 |
169
|
adantr |
|- ( ( ph /\ R ( ( ( R x.s B ) -s ( R x.s W ) ) ( ( ( R x.s B ) -s ( R x.s W ) ) +s ( A x.s W ) ) |
171 |
166 170
|
mpbid |
|- ( ( ph /\ R ( ( ( R x.s B ) -s ( R x.s W ) ) +s ( A x.s W ) ) |
172 |
15 25 27
|
addsubsd |
|- ( ph -> ( ( ( R x.s B ) +s ( A x.s W ) ) -s ( R x.s W ) ) = ( ( ( R x.s B ) -s ( R x.s W ) ) +s ( A x.s W ) ) ) |
173 |
172
|
adantr |
|- ( ( ph /\ R ( ( ( R x.s B ) +s ( A x.s W ) ) -s ( R x.s W ) ) = ( ( ( R x.s B ) -s ( R x.s W ) ) +s ( A x.s W ) ) ) |
174 |
31 25 33
|
addsubsd |
|- ( ph -> ( ( ( V x.s B ) +s ( A x.s W ) ) -s ( V x.s W ) ) = ( ( ( V x.s B ) -s ( V x.s W ) ) +s ( A x.s W ) ) ) |
175 |
174
|
adantr |
|- ( ( ph /\ R ( ( ( V x.s B ) +s ( A x.s W ) ) -s ( V x.s W ) ) = ( ( ( V x.s B ) -s ( V x.s W ) ) +s ( A x.s W ) ) ) |
176 |
171 173 175
|
3brtr4d |
|- ( ( ph /\ R ( ( ( R x.s B ) +s ( A x.s W ) ) -s ( R x.s W ) ) |
177 |
22 29 35 120 176
|
slttrd |
|- ( ( ph /\ R ( ( ( R x.s B ) +s ( A x.s S ) ) -s ( R x.s S ) ) |
178 |
177
|
ex |
|- ( ph -> ( R ( ( ( R x.s B ) +s ( A x.s S ) ) -s ( R x.s S ) ) |
179 |
37 39 6
|
ssltsepcd |
|- ( ph -> A |
180 |
55
|
uneq1i |
|- ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` S ) ) ) u. ( ( ( bday ` A ) +no ( bday ` S ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) ) ) = ( (/) u. ( ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` S ) ) ) u. ( ( ( bday ` A ) +no ( bday ` S ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) ) ) |
181 |
|
0un |
|- ( (/) u. ( ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` S ) ) ) u. ( ( ( bday ` A ) +no ( bday ` S ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) ) ) = ( ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` S ) ) ) u. ( ( ( bday ` A ) +no ( bday ` S ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) ) |
182 |
180 181
|
eqtri |
|- ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` S ) ) ) u. ( ( ( bday ` A ) +no ( bday ` S ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) ) ) = ( ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` S ) ) ) u. ( ( ( bday ` A ) +no ( bday ` S ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) ) |
183 |
|
naddel12 |
|- ( ( ( bday ` A ) e. On /\ ( bday ` B ) e. On ) -> ( ( ( bday ` V ) e. ( bday ` A ) /\ ( bday ` S ) e. ( bday ` B ) ) -> ( ( bday ` V ) +no ( bday ` S ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) |
184 |
63 62 183
|
mp2an |
|- ( ( ( bday ` V ) e. ( bday ` A ) /\ ( bday ` S ) e. ( bday ` B ) ) -> ( ( bday ` V ) +no ( bday ` S ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) |
185 |
130 70 184
|
syl2anc |
|- ( ph -> ( ( bday ` V ) +no ( bday ` S ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) |
186 |
66 185
|
jca |
|- ( ph -> ( ( ( bday ` A ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` V ) +no ( bday ` S ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) |
187 |
78 141
|
jca |
|- ( ph -> ( ( ( bday ` A ) +no ( bday ` S ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` V ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) |
188 |
|
naddcl |
|- ( ( ( bday ` V ) e. On /\ ( bday ` S ) e. On ) -> ( ( bday ` V ) +no ( bday ` S ) ) e. On ) |
189 |
131 75 188
|
mp2an |
|- ( ( bday ` V ) +no ( bday ` S ) ) e. On |
190 |
84 189
|
onun2i |
|- ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` S ) ) ) e. On |
191 |
90 149
|
onun2i |
|- ( ( ( bday ` A ) +no ( bday ` S ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) e. On |
192 |
|
onunel |
|- ( ( ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` S ) ) ) e. On /\ ( ( ( bday ` A ) +no ( bday ` S ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) e. On /\ ( ( bday ` A ) +no ( bday ` B ) ) e. On ) -> ( ( ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` S ) ) ) u. ( ( ( bday ` A ) +no ( bday ` S ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` S ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( ( bday ` A ) +no ( bday ` S ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) ) |
193 |
190 191 95 192
|
mp3an |
|- ( ( ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` S ) ) ) u. ( ( ( bday ` A ) +no ( bday ` S ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` S ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( ( bday ` A ) +no ( bday ` S ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) |
194 |
|
onunel |
|- ( ( ( ( bday ` A ) +no ( bday ` W ) ) e. On /\ ( ( bday ` V ) +no ( bday ` S ) ) e. On /\ ( ( bday ` A ) +no ( bday ` B ) ) e. On ) -> ( ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` S ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( bday ` A ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` V ) +no ( bday ` S ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) ) |
195 |
84 189 95 194
|
mp3an |
|- ( ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` S ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( bday ` A ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` V ) +no ( bday ` S ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) |
196 |
|
onunel |
|- ( ( ( ( bday ` A ) +no ( bday ` S ) ) e. On /\ ( ( bday ` V ) +no ( bday ` W ) ) e. On /\ ( ( bday ` A ) +no ( bday ` B ) ) e. On ) -> ( ( ( ( bday ` A ) +no ( bday ` S ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( bday ` A ) +no ( bday ` S ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` V ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) ) |
197 |
90 149 95 196
|
mp3an |
|- ( ( ( ( bday ` A ) +no ( bday ` S ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( bday ` A ) +no ( bday ` S ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` V ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) |
198 |
195 197
|
anbi12i |
|- ( ( ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` S ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( ( bday ` A ) +no ( bday ` S ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) <-> ( ( ( ( bday ` A ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` V ) +no ( bday ` S ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) /\ ( ( ( bday ` A ) +no ( bday ` S ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` V ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) ) |
199 |
193 198
|
bitri |
|- ( ( ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` S ) ) ) u. ( ( ( bday ` A ) +no ( bday ` S ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( ( bday ` A ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` V ) +no ( bday ` S ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) /\ ( ( ( bday ` A ) +no ( bday ` S ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` V ) +no ( bday ` W ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) ) |
200 |
186 187 199
|
sylanbrc |
|- ( ph -> ( ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` S ) ) ) u. ( ( ( bday ` A ) +no ( bday ` S ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) |
201 |
|
elun1 |
|- ( ( ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` S ) ) ) u. ( ( ( bday ` A ) +no ( bday ` S ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) -> ( ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` S ) ) ) u. ( ( ( bday ` A ) +no ( bday ` S ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) ) |
202 |
200 201
|
syl |
|- ( ph -> ( ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` S ) ) ) u. ( ( ( bday ` A ) +no ( bday ` S ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) ) |
203 |
182 202
|
eqeltrid |
|- ( ph -> ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( ( ( bday ` A ) +no ( bday ` W ) ) u. ( ( bday ` V ) +no ( bday ` S ) ) ) u. ( ( ( bday ` A ) +no ( bday ` S ) ) u. ( ( bday ` V ) +no ( bday ` W ) ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) ) |
204 |
1 45 45 2 10 47 49 203
|
mulsproplem1 |
|- ( ph -> ( ( 0s x.s 0s ) e. No /\ ( ( A ( ( A x.s S ) -s ( A x.s W ) ) |
205 |
204
|
simprd |
|- ( ph -> ( ( A ( ( A x.s S ) -s ( A x.s W ) ) |
206 |
179 43 205
|
mp2and |
|- ( ph -> ( ( A x.s S ) -s ( A x.s W ) ) |
207 |
1 30 17
|
mulsproplem4 |
|- ( ph -> ( V x.s S ) e. No ) |
208 |
18 207 25 33
|
sltsubsubbd |
|- ( ph -> ( ( ( A x.s S ) -s ( A x.s W ) ) ( ( A x.s S ) -s ( V x.s S ) ) |
209 |
18 207
|
subscld |
|- ( ph -> ( ( A x.s S ) -s ( V x.s S ) ) e. No ) |
210 |
25 33
|
subscld |
|- ( ph -> ( ( A x.s W ) -s ( V x.s W ) ) e. No ) |
211 |
209 210 31
|
sltadd2d |
|- ( ph -> ( ( ( A x.s S ) -s ( V x.s S ) ) ( ( V x.s B ) +s ( ( A x.s S ) -s ( V x.s S ) ) ) |
212 |
208 211
|
bitrd |
|- ( ph -> ( ( ( A x.s S ) -s ( A x.s W ) ) ( ( V x.s B ) +s ( ( A x.s S ) -s ( V x.s S ) ) ) |
213 |
206 212
|
mpbid |
|- ( ph -> ( ( V x.s B ) +s ( ( A x.s S ) -s ( V x.s S ) ) ) |
214 |
31 18 207
|
addsubsassd |
|- ( ph -> ( ( ( V x.s B ) +s ( A x.s S ) ) -s ( V x.s S ) ) = ( ( V x.s B ) +s ( ( A x.s S ) -s ( V x.s S ) ) ) ) |
215 |
31 25 33
|
addsubsassd |
|- ( ph -> ( ( ( V x.s B ) +s ( A x.s W ) ) -s ( V x.s W ) ) = ( ( V x.s B ) +s ( ( A x.s W ) -s ( V x.s W ) ) ) ) |
216 |
213 214 215
|
3brtr4d |
|- ( ph -> ( ( ( V x.s B ) +s ( A x.s S ) ) -s ( V x.s S ) ) |
217 |
|
oveq1 |
|- ( R = V -> ( R x.s B ) = ( V x.s B ) ) |
218 |
217
|
oveq1d |
|- ( R = V -> ( ( R x.s B ) +s ( A x.s S ) ) = ( ( V x.s B ) +s ( A x.s S ) ) ) |
219 |
|
oveq1 |
|- ( R = V -> ( R x.s S ) = ( V x.s S ) ) |
220 |
218 219
|
oveq12d |
|- ( R = V -> ( ( ( R x.s B ) +s ( A x.s S ) ) -s ( R x.s S ) ) = ( ( ( V x.s B ) +s ( A x.s S ) ) -s ( V x.s S ) ) ) |
221 |
220
|
breq1d |
|- ( R = V -> ( ( ( ( R x.s B ) +s ( A x.s S ) ) -s ( R x.s S ) ) ( ( ( V x.s B ) +s ( A x.s S ) ) -s ( V x.s S ) ) |
222 |
216 221
|
syl5ibrcom |
|- ( ph -> ( R = V -> ( ( ( R x.s B ) +s ( A x.s S ) ) -s ( R x.s S ) ) |
223 |
21
|
adantr |
|- ( ( ph /\ V ( ( ( R x.s B ) +s ( A x.s S ) ) -s ( R x.s S ) ) e. No ) |
224 |
31 18
|
addscld |
|- ( ph -> ( ( V x.s B ) +s ( A x.s S ) ) e. No ) |
225 |
224 207
|
subscld |
|- ( ph -> ( ( ( V x.s B ) +s ( A x.s S ) ) -s ( V x.s S ) ) e. No ) |
226 |
225
|
adantr |
|- ( ( ph /\ V ( ( ( V x.s B ) +s ( A x.s S ) ) -s ( V x.s S ) ) e. No ) |
227 |
34
|
adantr |
|- ( ( ph /\ V ( ( ( V x.s B ) +s ( A x.s W ) ) -s ( V x.s W ) ) e. No ) |
228 |
|
ssltright |
|- ( B e. No -> { B } < |
229 |
3 228
|
syl |
|- ( ph -> { B } < |
230 |
229 124 5
|
ssltsepcd |
|- ( ph -> B |
231 |
55
|
uneq1i |
|- ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( ( ( bday ` V ) +no ( bday ` B ) ) u. ( ( bday ` R ) +no ( bday ` S ) ) ) u. ( ( ( bday ` V ) +no ( bday ` S ) ) u. ( ( bday ` R ) +no ( bday ` B ) ) ) ) ) = ( (/) u. ( ( ( ( bday ` V ) +no ( bday ` B ) ) u. ( ( bday ` R ) +no ( bday ` S ) ) ) u. ( ( ( bday ` V ) +no ( bday ` S ) ) u. ( ( bday ` R ) +no ( bday ` B ) ) ) ) ) |
232 |
|
0un |
|- ( (/) u. ( ( ( ( bday ` V ) +no ( bday ` B ) ) u. ( ( bday ` R ) +no ( bday ` S ) ) ) u. ( ( ( bday ` V ) +no ( bday ` S ) ) u. ( ( bday ` R ) +no ( bday ` B ) ) ) ) ) = ( ( ( ( bday ` V ) +no ( bday ` B ) ) u. ( ( bday ` R ) +no ( bday ` S ) ) ) u. ( ( ( bday ` V ) +no ( bday ` S ) ) u. ( ( bday ` R ) +no ( bday ` B ) ) ) ) |
233 |
231 232
|
eqtri |
|- ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( ( ( bday ` V ) +no ( bday ` B ) ) u. ( ( bday ` R ) +no ( bday ` S ) ) ) u. ( ( ( bday ` V ) +no ( bday ` S ) ) u. ( ( bday ` R ) +no ( bday ` B ) ) ) ) ) = ( ( ( ( bday ` V ) +no ( bday ` B ) ) u. ( ( bday ` R ) +no ( bday ` S ) ) ) u. ( ( ( bday ` V ) +no ( bday ` S ) ) u. ( ( bday ` R ) +no ( bday ` B ) ) ) ) |
234 |
134 73
|
jca |
|- ( ph -> ( ( ( bday ` V ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` R ) +no ( bday ` S ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) |
235 |
185 138
|
jca |
|- ( ph -> ( ( ( bday ` V ) +no ( bday ` S ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` R ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) |
236 |
144 87
|
onun2i |
|- ( ( ( bday ` V ) +no ( bday ` B ) ) u. ( ( bday ` R ) +no ( bday ` S ) ) ) e. On |
237 |
189 147
|
onun2i |
|- ( ( ( bday ` V ) +no ( bday ` S ) ) u. ( ( bday ` R ) +no ( bday ` B ) ) ) e. On |
238 |
|
onunel |
|- ( ( ( ( ( bday ` V ) +no ( bday ` B ) ) u. ( ( bday ` R ) +no ( bday ` S ) ) ) e. On /\ ( ( ( bday ` V ) +no ( bday ` S ) ) u. ( ( bday ` R ) +no ( bday ` B ) ) ) e. On /\ ( ( bday ` A ) +no ( bday ` B ) ) e. On ) -> ( ( ( ( ( bday ` V ) +no ( bday ` B ) ) u. ( ( bday ` R ) +no ( bday ` S ) ) ) u. ( ( ( bday ` V ) +no ( bday ` S ) ) u. ( ( bday ` R ) +no ( bday ` B ) ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( ( bday ` V ) +no ( bday ` B ) ) u. ( ( bday ` R ) +no ( bday ` S ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( ( bday ` V ) +no ( bday ` S ) ) u. ( ( bday ` R ) +no ( bday ` B ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) ) |
239 |
236 237 95 238
|
mp3an |
|- ( ( ( ( ( bday ` V ) +no ( bday ` B ) ) u. ( ( bday ` R ) +no ( bday ` S ) ) ) u. ( ( ( bday ` V ) +no ( bday ` S ) ) u. ( ( bday ` R ) +no ( bday ` B ) ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( ( bday ` V ) +no ( bday ` B ) ) u. ( ( bday ` R ) +no ( bday ` S ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( ( bday ` V ) +no ( bday ` S ) ) u. ( ( bday ` R ) +no ( bday ` B ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) |
240 |
|
onunel |
|- ( ( ( ( bday ` V ) +no ( bday ` B ) ) e. On /\ ( ( bday ` R ) +no ( bday ` S ) ) e. On /\ ( ( bday ` A ) +no ( bday ` B ) ) e. On ) -> ( ( ( ( bday ` V ) +no ( bday ` B ) ) u. ( ( bday ` R ) +no ( bday ` S ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( bday ` V ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` R ) +no ( bday ` S ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) ) |
241 |
144 87 95 240
|
mp3an |
|- ( ( ( ( bday ` V ) +no ( bday ` B ) ) u. ( ( bday ` R ) +no ( bday ` S ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( bday ` V ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` R ) +no ( bday ` S ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) |
242 |
|
onunel |
|- ( ( ( ( bday ` V ) +no ( bday ` S ) ) e. On /\ ( ( bday ` R ) +no ( bday ` B ) ) e. On /\ ( ( bday ` A ) +no ( bday ` B ) ) e. On ) -> ( ( ( ( bday ` V ) +no ( bday ` S ) ) u. ( ( bday ` R ) +no ( bday ` B ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( bday ` V ) +no ( bday ` S ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` R ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) ) |
243 |
189 147 95 242
|
mp3an |
|- ( ( ( ( bday ` V ) +no ( bday ` S ) ) u. ( ( bday ` R ) +no ( bday ` B ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( bday ` V ) +no ( bday ` S ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` R ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) |
244 |
241 243
|
anbi12i |
|- ( ( ( ( ( bday ` V ) +no ( bday ` B ) ) u. ( ( bday ` R ) +no ( bday ` S ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( ( bday ` V ) +no ( bday ` S ) ) u. ( ( bday ` R ) +no ( bday ` B ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) <-> ( ( ( ( bday ` V ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` R ) +no ( bday ` S ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) /\ ( ( ( bday ` V ) +no ( bday ` S ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` R ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) ) |
245 |
239 244
|
bitri |
|- ( ( ( ( ( bday ` V ) +no ( bday ` B ) ) u. ( ( bday ` R ) +no ( bday ` S ) ) ) u. ( ( ( bday ` V ) +no ( bday ` S ) ) u. ( ( bday ` R ) +no ( bday ` B ) ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) <-> ( ( ( ( bday ` V ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` R ) +no ( bday ` S ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) /\ ( ( ( bday ` V ) +no ( bday ` S ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) /\ ( ( bday ` R ) +no ( bday ` B ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) ) ) |
246 |
234 235 245
|
sylanbrc |
|- ( ph -> ( ( ( ( bday ` V ) +no ( bday ` B ) ) u. ( ( bday ` R ) +no ( bday ` S ) ) ) u. ( ( ( bday ` V ) +no ( bday ` S ) ) u. ( ( bday ` R ) +no ( bday ` B ) ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) ) |
247 |
|
elun1 |
|- ( ( ( ( ( bday ` V ) +no ( bday ` B ) ) u. ( ( bday ` R ) +no ( bday ` S ) ) ) u. ( ( ( bday ` V ) +no ( bday ` S ) ) u. ( ( bday ` R ) +no ( bday ` B ) ) ) ) e. ( ( bday ` A ) +no ( bday ` B ) ) -> ( ( ( ( bday ` V ) +no ( bday ` B ) ) u. ( ( bday ` R ) +no ( bday ` S ) ) ) u. ( ( ( bday ` V ) +no ( bday ` S ) ) u. ( ( bday ` R ) +no ( bday ` B ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) ) |
248 |
246 247
|
syl |
|- ( ph -> ( ( ( ( bday ` V ) +no ( bday ` B ) ) u. ( ( bday ` R ) +no ( bday ` S ) ) ) u. ( ( ( bday ` V ) +no ( bday ` S ) ) u. ( ( bday ` R ) +no ( bday ` B ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) ) |
249 |
233 248
|
eqeltrid |
|- ( ph -> ( ( ( bday ` 0s ) +no ( bday ` 0s ) ) u. ( ( ( ( bday ` V ) +no ( bday ` B ) ) u. ( ( bday ` R ) +no ( bday ` S ) ) ) u. ( ( ( bday ` V ) +no ( bday ` S ) ) u. ( ( bday ` R ) +no ( bday ` B ) ) ) ) ) e. ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( ( ( bday ` C ) +no ( bday ` E ) ) u. ( ( bday ` D ) +no ( bday ` F ) ) ) u. ( ( ( bday ` C ) +no ( bday ` F ) ) u. ( ( bday ` D ) +no ( bday ` E ) ) ) ) ) ) |
250 |
1 45 45 10 9 3 49 249
|
mulsproplem1 |
|- ( ph -> ( ( 0s x.s 0s ) e. No /\ ( ( V ( ( V x.s S ) -s ( V x.s B ) ) |
251 |
250
|
simprd |
|- ( ph -> ( ( V ( ( V x.s S ) -s ( V x.s B ) ) |
252 |
230 251
|
mpan2d |
|- ( ph -> ( V ( ( V x.s S ) -s ( V x.s B ) ) |
253 |
252
|
imp |
|- ( ( ph /\ V ( ( V x.s S ) -s ( V x.s B ) ) |
254 |
207 31 20 15
|
sltsubsub2bd |
|- ( ph -> ( ( ( V x.s S ) -s ( V x.s B ) ) ( ( R x.s B ) -s ( R x.s S ) ) |
255 |
15 20
|
subscld |
|- ( ph -> ( ( R x.s B ) -s ( R x.s S ) ) e. No ) |
256 |
31 207
|
subscld |
|- ( ph -> ( ( V x.s B ) -s ( V x.s S ) ) e. No ) |
257 |
255 256 18
|
sltadd1d |
|- ( ph -> ( ( ( R x.s B ) -s ( R x.s S ) ) ( ( ( R x.s B ) -s ( R x.s S ) ) +s ( A x.s S ) ) |
258 |
254 257
|
bitrd |
|- ( ph -> ( ( ( V x.s S ) -s ( V x.s B ) ) ( ( ( R x.s B ) -s ( R x.s S ) ) +s ( A x.s S ) ) |
259 |
258
|
adantr |
|- ( ( ph /\ V ( ( ( V x.s S ) -s ( V x.s B ) ) ( ( ( R x.s B ) -s ( R x.s S ) ) +s ( A x.s S ) ) |
260 |
253 259
|
mpbid |
|- ( ( ph /\ V ( ( ( R x.s B ) -s ( R x.s S ) ) +s ( A x.s S ) ) |
261 |
15 18 20
|
addsubsd |
|- ( ph -> ( ( ( R x.s B ) +s ( A x.s S ) ) -s ( R x.s S ) ) = ( ( ( R x.s B ) -s ( R x.s S ) ) +s ( A x.s S ) ) ) |
262 |
261
|
adantr |
|- ( ( ph /\ V ( ( ( R x.s B ) +s ( A x.s S ) ) -s ( R x.s S ) ) = ( ( ( R x.s B ) -s ( R x.s S ) ) +s ( A x.s S ) ) ) |
263 |
31 18 207
|
addsubsd |
|- ( ph -> ( ( ( V x.s B ) +s ( A x.s S ) ) -s ( V x.s S ) ) = ( ( ( V x.s B ) -s ( V x.s S ) ) +s ( A x.s S ) ) ) |
264 |
263
|
adantr |
|- ( ( ph /\ V ( ( ( V x.s B ) +s ( A x.s S ) ) -s ( V x.s S ) ) = ( ( ( V x.s B ) -s ( V x.s S ) ) +s ( A x.s S ) ) ) |
265 |
260 262 264
|
3brtr4d |
|- ( ( ph /\ V ( ( ( R x.s B ) +s ( A x.s S ) ) -s ( R x.s S ) ) |
266 |
216
|
adantr |
|- ( ( ph /\ V ( ( ( V x.s B ) +s ( A x.s S ) ) -s ( V x.s S ) ) |
267 |
223 226 227 265 266
|
slttrd |
|- ( ( ph /\ V ( ( ( R x.s B ) +s ( A x.s S ) ) -s ( R x.s S ) ) |
268 |
267
|
ex |
|- ( ph -> ( V ( ( ( R x.s B ) +s ( A x.s S ) ) -s ( R x.s S ) ) |
269 |
178 222 268
|
3jaod |
|- ( ph -> ( ( R ( ( ( R x.s B ) +s ( A x.s S ) ) -s ( R x.s S ) ) |
270 |
12 269
|
mpd |
|- ( ph -> ( ( ( R x.s B ) +s ( A x.s S ) ) -s ( R x.s S ) ) |